
AsciiDoc
Version pre-spec, 2025-11-03

Table of Contents
About AsciiDoc . 1

About this documentation . 2

Introduction. 3

Document Structure . 3

Documents. 3

Lines . 4

Blocks . 4

Text and inline elements . 5

Encodings and AsciiDoc files . 5

Key Concepts . 5

Document . 5

Elements . 5

Attributes . 6

Macros . 7

Preprocessor directives . 7

Document Processing . 7

Normalization . 8

Blocks. 9

What is a block? . 9

Block forms . 9

Content model. 9

Context . 10

Summary of built-in contexts . 11

Contexts used by the converter . 12

Block style . 12

Block commonalities . 13

Delimited Blocks. 14

Overview . 14

Linewise delimiters. 15

Structural containers . 15

Nesting blocks . 16

Build a Basic Block. 17

Build a delimited block . 17

Build a block from a paragraph . 18

Summary of built-in blocks. 19

Add a Title to a Block. 20

Block title syntax . 20

Add a title to a delimited block. 20

Add a title to a block with attributes. 21

Captioned titles . 22

Assign an ID. 24

Block ID syntax. 24

Assign an ID to a block with attributes . 24

Block Masquerading . 25

How it works. 25

Built-in permutations . 26

Troubleshooting Blocks . 26

Opening and closing delimiters . 26

Document Attributes . 28

What are document attributes? . 28

Types of document attributes . 28

What does defining a document attribute mean? . 29

What does setting a document attribute mean?. 29

What does unsetting a document attribute mean? . 29

Where are document attributes defined, set, and unset? . 29

What does referencing a document attribute mean? . 30

Where can document attributes be referenced? . 30

Attribute Entries. 30

What is an attribute entry? . 30

Where can an attribute entry be declared? . 31

Defining document attributes without an attribute entry . 32

Attribute Entry Names and Values . 32

Wrap Attribute Entry Values . 33

Attribute Entry Substitutions . 34

Inline Attribute Entries . 37

Declare Built-In Attributes. 37

Use an attribute’s default value . 38

Override an attribute’s default value . 38

Set Boolean Attributes . 39

Declare Custom Attributes. 39

User-defined attribute names and values . 39

Create a custom attribute and value. 40

Unset Attributes . 40

Unset a document attribute in the header . 40

Unset a document attribute in the body . 41

Reference Attributes . 42

Reference a custom attribute . 42

Reference a built-in attribute . 43

Escape an attribute reference . 43

Handle Unresolved References . 45

Attribute Assignment Precedence . 47

Default attribute value precedence. 47

Altering the assignment precedence . 47

Counters . 48

Element Attributes . 52

What are element attributes? . 52

Attribute lists. 52

Positional and Named Attributes . 54

Positional attribute . 54

Named attribute. 56

Attribute list parsing. 56

Substitutions . 57

ID Attribute . 58

Valid ID characters . 58

Block assignment. 59

Inline assignment . 60

Use an ID as an anchor. 60

Add additional anchors to a section . 62

Customize automatic xreftext . 62

Role Attribute . 63

Assign roles to blocks . 63

Assign roles to formatted inline elements. 64

Options Attribute . 65

Assign options to blocks. 65

Using options with other attributes . 67

Document Header . 68

Document header structure . 68

When does the document header end? . 69

Header requirements per doctype. 69

Header processing . 70

Front matter . 70

Document Title . 70

Title syntax . 70

Hide or show the document title . 71

Reference the document title . 71

title attribute. 71

Subtitle . 71

Author Information. 73

Author and email attributes . 73

Multiple author attributes. 74

Using the Author Line. 74

Add Multiple Authors to a Document . 76

Assign Author and Email with Attribute Entries . 77

Reference the Author Information . 78

Compound Author Names . 80

Revision Information . 82

Revision attributes . 82

Using the Revision Line . 83

Assign Revision Attributes with Attribute Entries. 85

Version Label Attribute . 86

Reference the Revision Attributes. 87

Document Metadata . 88

Description . 88

Keywords. 89

Custom metadata, styles, and functions. 90

Document Header Reference . 90

Document Type . 91

Document types . 91

Inline doctype rules. 91

Sections . 93

Section Titles and Levels . 93

Section level syntax. 93

Titles as HTML headings . 95

Activate Section Title Links . 95

Autogenerate Section IDs . 95

How a section ID is computed . 95

Disable automatic section ID generation . 96

Change the ID Prefix and Separator . 97

Assign Custom IDs and Reference Text. 98

Assign auxiliary IDs . 98

Section Numbers . 99

Turn on section numbers . 99

Specify the section levels that are numbered. 101

Section Styles for Articles and Books . 101

Book section styles . 101

Article section styles . 102

Hide Special Section Titles . 102

Number Special Sections . 102

Colophon . 103

Dedication . 104

Abstract (Section) . 104

Abstract (Block) . 105

Preface . 105

Book Parts . 106

Chapters. 111

Appendix . 112

Glossary . 114

Bibliography . 115

Index. 117

Section Attributes and Styles Reference. 119

Section attributes . 119

Section styles . 120

Paragraphs . 121

Create a paragraph . 121

Hard Line Breaks . 121

Inline line break syntax. 123

hardbreaks option. 123

hardbreaks-option attribute. 123

Preamble and Lead Style . 124

Preamble . 124

Lead role . 125

Paragraph Alignment . 126

Discrete Headings. 127

Breaks . 128

Thematic breaks. 128

Markdown-style thematic breaks . 128

Page breaks . 128

Text Formatting and Punctuation . 130

Formatting terms and concepts . 130

Formatting marks and pairs . 130

Constrained formatting pair. 130

Unconstrained formatting pair . 131

Inline text and punctuation styles . 131

Quotes substitution . 132

Bold . 132

Bold syntax . 132

Mixing bold with other formatting . 133

Italic . 133

Italic syntax . 133

Mixing italic with other formatting . 134

Monospace. 134

Constrained. 134

Unconstrained . 135

Mixed Formatting . 135

Literal Monospace. 135

Literal Monospace . 135

Text Span and Built-in Roles . 136

Text span syntax . 136

Built-in roles for text . 137

Highlight . 137

Highlight syntax. 137

Quotation Marks and Apostrophes . 138

Single and double quotation mark syntax . 138

Apostrophe syntax . 139

Subscript and Superscript . 141

Subscript and superscript syntax . 141

Using Custom Inline Styles . 142

Custom style syntax . 142

Troubleshoot Unconstrained Formatting Pairs . 143

When should I use unconstrained formatting? . 143

Escape unconstrained formatting marks . 145

Lists . 147

Unordered Lists . 147

Basic unordered list . 147

Nested unordered list . 148

Markers . 150

Ordered Lists. 152

Basic ordered list . 152

Nested ordered list . 154

Number styles . 156

Escaping the list marker . 157

Checklists . 157

Separating Lists . 158

Using a line comment. 159

Using a block attribute line. 159

Compound List Items . 159

Multiline principal text . 160

Attach blocks using a list continuation . 161

Drop the principal text. 163

Attach blocks to an ancestor list . 164

Summary . 166

Description Lists . 167

Anatomy. 167

Basic description list . 167

Mixing lists . 168

Nested description list . 169

Horizontal Description List . 170

Question and Answer Lists . 171

Question and answer list syntax . 171

Description Lists With Marker . 172

Introduction . 172

Syntax. 172

Subject stop. 173

Stacked. 174

Alternatives . 174

Links . 176

URLs and links . 176

Link-related macros . 176

Encode reserved characters . 176

Hide the URL scheme . 177

Autolinks . 177

URL schemes for autolinks . 178

Email autolinks . 178

Escaping URLs and email addresses . 179

URL Macro . 179

From URL to macro. 179

Custom link text. 180

Link attributes . 180

Link Macro . 181

Anatomy . 181

Link to a relative file . 181

When to use the link macro . 181

Final word. 183

Troubleshooting Complex URLs . 183

Link & URL Macro Attribute Parsing . 184

Link text alongside named attributes. 184

Target a separate window. 185

Mailto Macro. 187

Link text and named attributes . 187

Subject and body . 188

Link, URL, and Mailto Macro Attributes Reference. 189

Cross References. 190

Automatic anchors . 190

Internal cross references . 190

Explicit link text. 191

Natural cross reference . 192

Document to Document Cross References . 192

Navigating between source files . 193

Mapping references to a different structure . 194

Cross Reference Text and Styles. 194

Default styling . 194

Cross reference styles. 195

Reference signifiers . 196

Validate Cross References . 197

Footnotes . 199

Footnote macro syntax . 199

Externalizing a footnote. 200

Footnotes in headings . 201

Images . 203

Block image macro . 203

Figure caption label . 205

Inline image macro . 205

Set the Images Directory . 206

imagesdir attribute syntax . 206

Insert Images from a URL . 206

Image URL targets . 207

Position and Frame Images . 208

Positioning attributes . 208

Positioning roles . 208

Framing roles . 209

Control the float. 210

Add Link to Image . 210

link attribute. 210

Link controls. 211

Adjust Image Sizes . 211

width and height attributes . 212

pdfwidth attribute. 212

scaledwidth attribute . 213

Image sizing recap . 214

Specify Image Format . 215

Automatic image format . 215

format attribute . 215

When is the format used? . 216

SVG Images . 216

SVG dimensions . 216

Options for SVG images . 217

Images Reference. 218

Audio and Video . 221

Audio macro syntax . 221

Video macro syntax. 221

Vimeo and YouTube videos. 222

Audio and video attributes and options. 223

Icons . 225

Enable icons . 225

Where icons are used . 225

Image Icons Mode . 226

Enable image-based icons . 226

Default icons directory and type . 226

Configure the icons directory using iconsdir . 226

Configure the icon type using icontype . 227

Font Icons Mode . 227

Enable font-based icons. 227

Default icon font . 227

Default admonition icons . 228

Callout numbers and font icon mode. 228

Icon Macro. 228

Anatomy . 228

Example . 228

How the icon is resolved . 229

Icon macro attributes (shared) . 229

Icon macro attributes (image mode only) . 230

Icon macro attributes (font mode only). 230

Keyboard Macro . 232

Keyboard macro syntax . 232

Button and Menu UI Macros . 234

Button macro syntax. 234

Menu macro syntax. 234

Admonitions . 236

Admonition types. 236

Admonition syntax . 237

Enable admonition icons . 238

Using emoji for admonition icons . 238

Sidebars . 240

Sidebar style syntax . 240

Delimited sidebar syntax . 240

Example Blocks. 242

Example style syntax . 242

Delimited example syntax . 242

Blockquotes . 244

Basic quote syntax . 244

Quoted block . 245

Quoted paragraph . 245

Excerpt . 246

Markdown-style blockquotes . 246

Verses . 248

verse style syntax. 248

Delimited verse block syntax . 248

Verbatim and Source Blocks . 250

Source Code Blocks . 250

Using include directives in source blocks . 251

Source Highlighting . 251

Highlight Select Lines. 256

Highlight PHP Source Code . 258

Listing Blocks . 259

Listing style syntax . 259

Delimited listing block . 260

Listing substitutions . 260

Literal Blocks . 261

Indent method . 261

Callouts. 263

Callout syntax. 263

Automatic numbering . 264

Copy and paste friendly callouts . 265

Callout icons . 268

Tables . 269

Build a Basic Table. 269

Create a table with two columns and three rows . 269

Add a Title . 271

Customize the Title Label . 272

Turn Off the Title Label . 275

Add Columns to a Table . 276

Specify the number of columns with the cols attribute. 276

Specify the number of columns using the first row . 278

Adjust Column Widths . 279

Align Content by Column. 281

Format Content by Column. 287

Add Cells and Rows to a Table . 290

Table cells . 290

Create a table cell . 291

Enter a row’s cells on a single line . 292

Enter a row’s cells on consecutive lines . 293

Create a Header Row . 294

Create a Footer Row . 296

Align Content by Cell . 298

Format Content by Cell. 304

Span Columns and Rows . 308

Duplicate Cells . 311

Table Width. 312

Fixed width . 312

Autowidth . 313

Mix fixed and autowidth columns . 314

Table Borders . 314

Frame . 315

Grid . 316

Interaction with row and column spans . 318

Table Striping . 318

Striping attributes . 319

stripes block attribute . 319

table-stripes attribute. 320

Table Orientation. 320

Landscape . 320

Assign a Role to a Table . 321

Nesting Tables. 321

CSV, TSV and DSV Data . 322

Default table syntax . 322

Style and layout options . 322

Supported data formats . 323

Escape the cell separator . 323

Delimiter-separated values . 324

Data table formats. 326

Custom delimiters . 326

Shorthand notation for data tables. 327

Formatting cells in a data table . 328

Table Reference . 328

Equations and Formulas (STEM) . 332

Activating STEM support . 332

Inline STEM content . 332

Block STEM content. 333

Newlines in AsciiMath blocks . 334

Newlines in LaTeX blocks . 335

Mixing STEM notations . 335

Equation numbering. 336

Reference equations . 337

Open Blocks . 338

Open block syntax . 338

Collapsible Blocks. 340

Collapsible block syntax. 340

Collapsible paragraph syntax . 340

Customize the toggle text . 340

Default to open . 341

Use as an enclosure . 341

Comments . 343

Comment lines . 343

Comment blocks. 344

Automatic Table of Contents . 346

Activate the TOC. 346

Activate the TOC from the CLI . 347

Customize the TOC Title . 347

Set toc-title. 348

Adjust the TOC Depth . 348

Set toclevels . 348

Position the TOC . 350

Display the TOC as a side column . 351

Display the TOC beneath the preamble . 352

Use the TOC macro to position the TOC . 353

Embeddable HTML, editor and previewer limitations . 354

TOC Attributes Reference. 355

Docinfo Files . 356

Head docinfo files . 356

Header docinfo files . 357

Footer docinfo files . 358

Naming docinfo files . 358

Enabling docinfo . 359

Locating docinfo files . 359

Attribute substitution in docinfo files. 360

Includes . 362

What is an include directive? . 362

When is an include directive useful? . 362

Include directive syntax. 362

Include processing. 363

Escaping an include directive. 364

Include file resolution . 364

AsciiDoc vs non-AsciiDoc files . 365

Offset Section Levels . 366

Manipulate heading levels with leveloffset . 366

Indent Included Content . 367

The indent attribute . 367

Use an Include File Multiple Times . 368

Include List Item Content. 369

Include Content by Tagged Regions. 370

Tagging regions . 370

Tag filtering. 373

Include Content by Line Ranges. 374

Specifying line ranges . 375

Include Content by URI. 375

Reference include content by URI . 375

Conditionals. 377

Conditional processing . 377

Escape a conditional directive . 377

ifdef and ifndef Directives . 377

ifdef directive . 377

ifndef directive. 378

Checking multiple attributes . 379

ifeval Directive . 380

Anatomy . 380

Values . 381

Operators. 382

Substitutions . 383

Substitution types . 383

Substitution groups . 383

Normal substitution group . 384

Header substitution group . 384

Verbatim substitution group . 384

Pass substitution group . 384

None substitution group . 384

Escaping substitutions . 384

Special Characters . 384

Default special characters substitution . 385

specialchars substitution value . 385

Quotes. 385

Default quotes substitution. 386

quotes substitution value . 387

Attribute References . 387

Default attributes substitution. 387

attributes substitution value . 388

Character Replacements . 388

Default replacements substitution . 390

replacements substitution value . 390

Macros . 391

Default macros substitution . 391

macros substitution value. 391

Post Replacements . 391

Default post replacements substitution . 391

post_replacements substitution value . 392

Customize the Substitutions Applied to Blocks. 392

The subs attribute . 392

Set the subs attribute on a block . 393

Add and remove substitution types from a default substitution group. 394

Customize the Substitutions Applied to Text. 396

Apply substitutions to inline text . 396

Escape and Prevent Substitutions . 397

Escape with backslashes . 397

Passthroughs . 399

Passthroughs . 400

Passthrough Blocks . 400

Pass style syntax . 400

Delimited passthrough block syntax . 400

Control substitutions on a passthrough block . 401

Inline Passthroughs. 401

Inline passthrough macros . 401

Single and double plus . 402

Triple plus . 403

Inline pass macro . 403

Nesting blocks and passthroughs . 405

Reference . 406

Syntax Quick Reference . 406

Paragraphs . 406

Text formatting . 407

Links . 409

Document header . 411

Section titles . 412

Automatic TOC . 414

Includes . 414

Lists. 414

Images . 419

Audio . 421

Videos. 422

Keyboard, button, and menu macros . 422

Literals and source code . 423

Admonitions . 427

More delimited blocks . 428

Tables . 432

IDs, roles, and options . 435

Comments . 436

Breaks. 437

Attributes and substitutions . 437

Text replacements . 438

Escaping substitutions . 439

Bibliography . 441

Footnotes . 441

Markdown compatibility. 442

Frequently Asked Questions (FAQ) . 444

Does AsciiDoc only support ASCII text? . 444

What’s the relationship between a converter and a backend? . 444

What’s the media type (aka MIME type) for AsciiDoc? . 445

Why is my document attribute being ignored? . 445

Part way through the document, the blocks stop rendering correctly. What went wrong? . . . 445

Why don’t links to URLs that contain an underscore or caret work?. 446

Compare AsciiDoc to Markdown . 446

Starting with Markdown . 446

Graduating to AsciiDoc . 446

Comparison by example . 447

Document Attributes Reference . 451

Intrinsic attributes . 452

Compliance attributes . 456

Localization and numbering attributes. 457

Document metadata attributes . 459

Section title and table of contents attributes . 461

General content and formatting attributes. 462

Image and icon attributes . 465

Source highlighting and formatting attributes . 466

HTML styling attributes. 467

Manpage attributes. 468

Security attributes. 469

Character Replacement Attributes Reference. 470

Glossary of Terms . 471

About AsciiDoc
AsciiDoc is a lightweight, semantic markup language primarily designed for writing technical docu­
mentation. The language can be used to produce a variety of presentation-rich output formats, all
from content encoded in a concise, human-readable, plain text format.

The AsciiDoc syntax is intuitive because it builds on well-established, plain text conventions for
marking up and structuring text. Someone unfamiliar with AsciiDoc can probably guess the pur­
pose of many of its syntax elements just by looking at them. That’s because the elements of the syn­
tax were carefully chosen to look like what they mean (a practice long employed by the tech indus­
try).

An AsciiDoc processor can parse and comprehend an AsciiDoc source document and convert the
parsed document structure into one or more output formats, such as HTML, PDF, EPUB3, man(ual)
page, or DocBook. The AsciiDoc language isn’t coupled to the output produced from it. The ability to
produce multiple output formats is one of the main advantages of AsciiDoc. This capability enables
it to be used in static site generators, help text, book publishing, IDEs, git tools and services, CI/CD
systems, and other novel uses.

AsciiDoc bridges the gap between ease of writing and the rigorous requirements of technical
authoring and publishing. AsciiDoc only requires a text editor to read or write, thereby offering a
low bar to getting started.

About AsciiDoc | 1

About this documentation
You’re reading the user-facing documentation for the AsciiDoc language as it’s implemented in Asci­
idoctor. This documentation does not cover how to set up and use Asciidoctor to process AsciiDoc
content. You can find that documentation in the Asciidoctor section of this website.

This documentation has been submitted as the initial contribution for the AsciiDoc Language
project at Eclipse. That project will use this documentation as the basis for drafting a specification
for the AsciiDoc language. It will also be used as the draft of the user-facing guide for the AsciiDoc
Language, which will also be maintained by that project.

Until the first version of the AsciiDoc Language Specification is ratified, AsciiDoc is defined by the
Asciidoctor implementation. There is no other official definition of the language.

The documentation for AsciiDoc will remain on this site until the AsciiDoc Language project starts
publishing its own documentation for the AsciiDoc Language.

Until then, let’s get started!

2 | About this documentation

https://docs.asciidoctor.org/asciidoctor/latest/
https://docs.asciidoctor.org/asciidoctor/latest/
https://docs.asciidoctor.org/asciidoctor/latest/
https://projects.eclipse.org/projects/technology.asciidoc
https://projects.eclipse.org/projects/technology.asciidoc

Introduction

Document Structure
On this page, you’ll learn about the overall structure of an AsciiDoc document. Don’t worry about
the details of the syntax at this point. That topic will be covered thoroughly later in the documenta­
tion. Right now, we’re just aiming to get a sense of what makes up an AsciiDoc document.

Documents

AsciiDoc is a plain text writing format with no boilerplate enclosure or prologue. An AsciiDoc docu­
ment may consist of only a single sentence (or even a single character, to be academic).

The example below is a valid AsciiDoc document. It contains a single paragraph that consists of a
single sentence.

This is a basic AsciiDoc document.

Of course, you can have more content than a single sentence! What we want to emphasize here is
that it’s simple to get started.

An AsciiDoc document is a series of blocks that are stacked linewise. These blocks are typically off­
set from one another by an empty line. (While these empty lines aren’t always required, we do rec­
ommend using them for readability.)

To expand the previous document from one paragraph to two, you’d separate the two paragraphs
by an empty line:

This is a basic AsciiDoc document.

This document contains two paragraphs.

An AsciiDoc document may begin with a document header. Although the document header is
optional, it’s often used because it allows you to specify a document title as well as document-wide
configuration and reusable text in the form of document attributes.

= Document Title
Author Name
:reproducible:

This is a basic AsciiDoc document by {author}.

This document contains two paragraphs.
It also has a header that specifies the document title and some attibutes.

Document Structure | 3

Almost any combination of blocks constitutes a valid AsciiDoc document (with some structural
requirements dictated by the document type). Documents can range from a single sentence to a
multi-part book.

Lines

The line is a significant building block in AsciiDoc. A line is defined as text that’s separated on
either side by either a newline character or the boundary of the document. Many aspects of the syn­
tax must occupy a whole line. That’s why we say AsciiDoc is a line-oriented language.

For example, a section title must be on a line by itself. The same is true for an attribute entry, a
block title, a block attribute list, a block macro, a list item, a block delimiter, and so forth.

Example 1. Example of a section title, which must occupy a single line

== Section Title

Example 2. Example of an attribute entry, which must also occupy at least one line

:name: value

Example 3. Example of an attribute entry that extends to two lines

:name: value \
more value

Empty lines can also be significant. For example, a single empty line separates the header from the
body. Many blocks are also separated by an empty line, as you saw in the example earlier with two
paragraphs.

In contrast, lines within paragraph content are insignificant. Keep these points in mind as you’re
learning about the AsciiDoc syntax.

Blocks

Blocks in an AsciiDoc document lay down the document structure. Some blocks may contain other
blocks, so the document structure is inherently hierarchical (i.e., a tree structure). You can inspect
this section structure, for example, by enabling the automatic table of contents. Examples of blocks
include paragraphs, sections, lists, delimited blocks, tables, and block macros.

Blocks are easy to identify because they’re usually offset from other blocks by an empty line
(though not always required). Blocks always start on a new line, terminate at the end of a line, and
are aligned to the left margin.

Every block can have one or more lines of block metadata. This metadata can be in the form of
block attributes, a block anchor, or a block title. These metadata lines must be above and directly
adjacent to the block itself.

4 | Document Structure

document:doctypes.pdf

Sections, non-verbatim delimited blocks, and AsciiDoc table cells may contain other blocks. Despite
the fact that blocks form a hierarchy, even nested blocks start at the left margin. By requiring
blocks to start at the left margin, it avoids the tedium of having to track and maintain levels of
indentation. It also happens to make the content more reusable.

Text and inline elements

Surrounded by the markers, delimiters, and metadata lines is the text. The text is the main focus of
a document and the reason the AsciiDoc syntax gives it so much room to breathe. Text is most often
found in the lines of a block (e.g., paragraph), the block title (e.g., section title), and in list items,
though there are other places where it can exist.

Text is subject to substitutions. Substitutions interpret markup as text formatting, replace macros
with text or non-text elements, expand attribute references, and perform other sorts of text replace­
ment.

Normal text is subject to all substitutions, unless specified otherwise. Verbatim text is subject to a
minimal set of substitutions to allow it to be displayed in the output as it appears in the source. It’s
also possible to disable all substitutions in order to pass the text through to the output unmodified
(i.e., raw). The parsing of text ends up being a mix of inline elements and other forms of transfor­
mations.

Encodings and AsciiDoc files

An AsciiDoc file is a text file that has the .adoc file extension (e.g., document.adoc). Most AsciiDoc
processors assume the text in the file uses UTF-8 encoding. UTF-16 encodings are supported only if
the file starts with a BOM.

An AsciiDoc processor can process AsciiDoc from a string (i.e., character sequence). However, most
of the time you’ll save your AsciiDoc documents to a file.

Key Concepts
This page introduces you to some of the concepts and terms you’ll encounter as you learn about
AsciiDoc. Each concept will be covered in more depth later in the documentation. Use this page as a
way to start to familiarize yourself with the lingo.

Document

A document represents the top-level block element in AsciiDoc. It consists of an optional document
header and either a) one or more sections preceded by an optional preamble or b) a sequence of
top-level blocks only.

The document can be configured using a document header. The header is not a block itself, but con­
tributes metadata to the document, such as the document title and document attributes.

Elements

An element is an identifiable, addressable, and composable chunk of content in a document. An

Key Concepts | 5

AsciiDoc document is merely a composition of all the elements it contains.

Elements are a hierarchy of types, where one element may be a specialization of a family of ele­
ments. For example, a sidebar block is a block element, so it shares the traits of all block elements,
and also adds some of its own.

Elements include the document itself, sections, blocks, block macros, breaks, and inline phrases and
macros.

A block element is stacked vertically (by line) above or below other block elements. Block elements
are typically referred to simply as blocks. Blocks form the main tree structure of the document.

An inline element is a span of content within a block element or one of its attributes (e.g., a block
title). Inline elements include formatted text (italic, bold, etc), inline macros, and element refer­
ences. What fills in the gap between these elements is unsubstituted text. Inline elements are less
structured than block elements as they are more geared towards substitutions than a tree structure.

Attributes

An attribute is a name/value pair used for storing and disclosing metadata in the AsciiDoc language.
Attributes can be used to influence the syntax, control behavior, customize styles, activate or con­
figure integrations, or store inline replacement content. Attributes truly set AsciiDoc apart from
other lightweight markup languages.

An attribute is actually an abstract term. There are two concrete classifications of attributes: docu­
ment attributes and element attributes.

Document attributes

Document attributes, as the name implies, are associated directly with the document. They are used
to export information about the document at runtime, control behavior of the processor, and to
store reusable values or phrases. Thus, they are a sort of two-way communication channel with the
processor.

Document attributes can be referenced in the content using an attribute reference (wherever the
attribute substitution is enabled). A document attribute can be defined either in the document
using an attribute entry (typically in the document header) or from the API or CLI. Not all docu­
ment attributes can be modified.

Element attributes

Element attributes are metadata on a specific element, like a block or an inline element. They are
defined in an attribute list and only apply to that element. The placement of the attribute list
depends on the element. The attribute name can either be a string (i.e., a named attribute) or an
implicit numerical index (i.e., an unnamed, positional attribute).

Unlike document attributes, element attributes cannot be referenced directly from the content, on
the document model. In other words, they cannot be resolved using an attribute reference. Element
attributes enrich or configure the behavior of an element, such as to apply a role or set the width of
an image. An element attribute is defined using an attribute list on an element, or an available

6 | Key Concepts

shorthand like a block title line.

Macros

As you read through this documentation, you’ll frequently see references to the term macro. A
macro is a syntax for representing non-text elements or syntax that expands into text using the pro­
vided metadata. See macro to learn more about the meaning of this term.

Here’s an example of a block macro:

image::sunset.jpg[Sunset]

Here’s an example of an inline macro:

Click the button with the image:star.png[Star] to favorite the project.

You can think of a macro like a function. A syntax of macro follows the form of a name, a target
which is sometimes optional, and an attribute list consisting of zero or more element attributes
enclosed in square brackets.

There are two variations of a macro: block and inline. In a block macro, the name and target are
separated by two colons (::) and it must reside on a line by itself. In an inline macro, the name and
target are separated by a single colon (:) and it can be alongside text and other inline elements. A
block macro is always parsed, whereas an inline macro is only parsed where the macros substitu­
tion is enabled.

Preprocessor directives

There’s another syntax in AsciiDoc that looks a lot like block macros, only they aren’t. These are the
preprocessor directives.

A preprocessor directive is a function that controls lines that are fed into the parser. A conditional
preprocessor directive can configure lines to be included or excluded based on the presence of an
attribute (ifdef, ifndef) or another arbitrary condition (ifeval). An include directive can add addi­
tional lines to the document taken from another document.

Preprocessor directives share common traits with a block macro. Like a block macro, a preproces­
sor directive must be on a line by itself. While the preprocessor directive can access document
attributes, it’s not otherwise aware of the context around it. It’s only a line processor. Like a block
macro, the include directive can have element attributes, though they only apply to the preprocess­
ing operation itself.

Document Processing
AsciiDoc is specifically a writing format, not a publishing format. In other words, it’s not WYSIWYG
like when you write in a word processor. Instead, what you write is the AsciiDoc source. You then
use an AsciiDoc processor, such as Asciidoctor, to convert the AsciiDoc source into a publishable

Document Processing | 7

https://en.wikipedia.org/wiki/Macro_(computer_science)

format. It’s this output that you publish.

Converting the AsciiDoc source is an opportunity to interpret and embellish your content to get
more out of it than what you put in. The work of converting the AsciiDoc source to another format
is handled by a converter. While there is a strong relationship between the language and the con­
verters, these two aspects are not explicitly coupled.

An AsciiDoc processor provides several built-in converters, including ones for making HTML and
DocBook. To activate one of these converters, you set the backend on the document (default: html).
The backend is a keyword that tells the processor which output format you want to make. The
processor then selects the converter that makes that output format. For example, the HTML con­
verter handles the html backend to make HTML output.

An AsciiDoc processor actually works in two steps. First, it parses the AsciiDoc document. This pars­
ing produces a structured document that reflects the written structure and interprets all the mean­
ingful markup. The processor then passes this structured document to the converter to transform it
into the output format.

In short, the processor accepts a string (which may be read from a file), parses it into a structure
document, then produces another string (which may be written to a file).

Normalization
When an AsciiDoc processor reads the AsciiDoc source, the first thing it does is normalize the lines.
(This operation can be performed up front or as each line is visited).

Normalization consists of the following operations:

• Force the encoding to UTF-8 (An AsciiDoc processor always assumes the content is UTF-8
encoded)

• Strip trailing spaces from each line (including any end of line character)

This normalization is performed independent of any structured context. It doesn’t matter if the line
is part of a literal block or a regular paragraph. All lines get normalized.

Normalization is only applied in certain cases to the lines of an include file. Only include files that
have a recognized AsciiDoc extension are normalized as described above. For all other files, only
the trailing end of line character is removed. Include files can also have a different encoding, which
is specified using the encoding attribute. If the encoding attribute is not specified, UTF-8 is assumed.

When the AsciiDoc processor brings the lines back together to produce the rendered document
(HTML, DocBook, etc), it joins the lines on the line feed character (\n).

8 | Normalization

Blocks
Block elements form the main structure of an AsciiDoc document, starting with the document itself.

What is a block?
A block element (aka block) is a discrete, line-oriented chunk of content in an AsciiDoc document.
Once parsed, that chunk of content becomes a block element in the parsed document model. Cer­
tain blocks may contain other blocks, so we say that blocks can be nested. The converter visits each
block in turn, in document order, converting it to a corresponding chunk of output.

Block forms
How the boundaries of a block are defined in the AsciiDoc syntax varies. The boundaries of some
blocks, like lists, paragraphs, and block macro, are implicit. Other blocks have boundaries that are
explicitly marked using delimiters (i.e., delimited blocks). The main commonality is that a block is
always line-oriented.

A paragraph block is defined as a discrete set of contiguous (non-empty) lines. A delimited block is
bounded by delimiter lines. A section block (aka section) is defined by a section title that’s prefixed
by one or more equal signs. The section includes all content that follows the section title line until
the next sibling or parent section title or the document boundary. A list block is defined by a group
of sibling list items, each denoted by a marker. A description list block is defined by a sibling group
of list items, each denoted by one or more terms. A block macro is defined by a single line that
matches the block macro syntax. And the document is also a block.

A block (including its metadata lines) should always be bounded by an empty line or document
boundary on either side.

Whether or not a block supports nested blocks depends on content model of the block (and what
the syntax allows).

Content model
The content model of a block determines what kind of content the block can have (if any) and how
that content is processed. The content models of blocks in AsciiDoc are as follows:

compound

a block that may only contain other blocks (e.g., a section)

simple

a block that’s treated as contiguous lines of paragraph text (and subject to normal substitutions)
(e.g., a paragraph block)

verbatim

a block that holds verbatim text (displayed “as is”) (and subject to verbatim substitutions) (e.g., a
listing block)

What is a block? | 9

raw

a block that holds unprocessed content passed directly through to the output with no substitu­
tions applied (e.g., a passthrough block)

empty

a block that has no content (e.g., an image block)

table

a special content model reserved for tables that enforces a fixed structure

The content model is inferred for all built-in syntax (as determined by the context), but can be con­
figured for custom blocks. Blocks may also support different content models under different cir­
cumstances. The circumstance is determined by the context and style, and in the case of a delimited
block, the structural container as well.

Context
You may often hear a block referred to by a name, such as an example block, a sidebar block, an
admonition block, or a section. That name is the block’s context.

Let’s consider the following normal section:

== Section Title

Content of section.

The context of this block is section. We often refer to this as a section (or section block), using the
context as an adjective to describe the block. The writer does not have to specify the context in this
case since it’s implied by the syntax.

Every block has a context. The context is often implied by the syntax, but can be declared explicitly
in certain cases. The context is what distinguishes one kind of block from another. You can think of
the context as the block’s type.

The context can be further modified using a block style to create a family of blocks that share a
common type, as is the case with admonition blocks and sections. We’ll cover that modifier shortly.

For blocks, the context is sometimes referred to as the block name. This comes up in particular
when talking about custom blocks. The block name is just another layer of abstraction. All the built-
in block names map to exactly one context. But a block extension can map an arbitrary block name
to one or more contexts. Which context is ultimately used depends on what is returned from the
extension’s process method. In the end, it’s the context that determines how the block is converted.

The context often determines the content model. For example, all sections implicitly have the com­
pound content model because a section may only contain other blocks. All literal blocks implicitly
have the verbatim content model because the purpose of this block is to present verbatim output.

10 | Context

Summary of built-in contexts

Here’s a list of the contexts of all the built-in blocks in AsciiDoc.



In the Asciidoctor API, the contexts are represented as symbols. In Ruby, a symbol
is a name prefixed with a colon (e.g., :listing). This documentation will sometimes
use this notation when referring to the name of a context. However, this notation
is not universal. Some processors, such as Asciidoctor.js, store the context as a
string instead.

Built-in contexts

Name Purpose

admonition One of five admonition blocks.

audio An audio block.

colist A callout list.

dlist A description list.

document The top-level document or the document in an AsciiDoc table cell

example An example block.

floating_title A discrete heading.

image An image block.

list_item An item in an ordered, unordered, or description list (only rele­
vant inside a list or description list block). In a description list,
this block is used to represent the term and the description.

listing A listing block.

literal A literal block.

olist An ordered list.

open An open block.

page_break A page break.

paragraph A paragraph.

pass A passthrough block.

preamble The preamble of the document.

quote A quote block (aka blockquote).

section A section. May also be a part, chapter, or special section.

sidebar A sidebar block.

table A table block.

table_cell A table cell (only relevant inside a table block).

thematic_break A thematic break (aka horizontal rule).

toc A TOC block (to designate custom TOC placement).

Context | 11

Name Purpose

ulist An unordered list.

verse A verse block.

video A video block.


Each inline element also has a context, but those elements are not (yet) accessible
from the parsed document model.

Additional contexts may be introduced through the use of the block, block macro, or inline macro
extension points.

Contexts used by the converter

The context is what the converter uses to dispatch to a convert method. The style is then used by
the converter to apply special behavior to blocks of the same family.

With two exceptions, there’s a 1-to-1 mapping between the contexts and the handler methods of a
converter. Those exceptions are the list_item and table_cell contexts, which are not mapped to a
handler method. In the converter, these blocks must be accessed from their parent block.

Block style
The context does not always tell the whole story of a block’s identity. Some blocks require special­
ization. That’s where the block style comes into play.

Above some blocks, you may notice a name at the start of the block attribute list (e.g., [source] or
[verse]). The first positional (unnamed) attribute in the block attribute list is used to declare the
block style.

The declared block style is the value the author supplies. That value is then interpreted and
resolved. The resolved block style, if non-empty, specializes the block’s context. (It may instead, or
in addition to, alter the block’s context).

Consider the following example of a source block:

[source,ruby]

puts "Hello, World!"

The context of a source block is listing (as inferred from the block delimiters) and the style is
source (as specified by the writer). We say that the style specializes the block as a source block.
(Technically, the presence of a source language already implies the source style, but under the cov­
ers this is what’s happening). The context of the block is still the same, but it has additional meta­
data to indicate that it requires special processing.

12 | Block style

We also see the block style used for other purposes. The appendix block style (e.g., [appendix]) above
the section title specializes the section as an appendix (a special section) and thus has special
semantics and behavior. In the model, the section’s style is dually stored as the sectname. One of the
five admonition styles (e.g., [TIP]) above an example block transforms the example block into an
admonition block with that name (i.e., label). In the model, the admonition style in lowercase is
stored in the name attribute. A block style (e.g., [circle] or [loweralpha]) above an unordered or
ordered list, respectively, alters the marker used in front of list items when displayed. A block style
(e.g., [qanda] and [horizontal]) above a description list can either change its semantics or layout.

The declared block style can be used to change the context of a block, referred to as block mas­
querading. Consider the case of this alternate syntax for a listing block using the literal block delim­
iters.

[listing]
....
a > b
....

Since the declared block style matches the name of a context, the context of the block becomes
listing and the resolved block style remains unset. That means the resolved block style differs
from the declared block style. To learn more about how to change the context of a block using the
declared block style, see Block Masquerading.

To get a complete picture of a block’s identity, you must consider both the context and the style. The
resolved style specializes the context to give it special behavior or semantics.

Block commonalities
Blocks are defined using some form of line-oriented syntax. Section blocks begin with a section title
line. Delimited blocks are enclosed in a matching pair of delimiter lines. Paragraph blocks must be
contiguous lines.

All blocks accommodate zero or more lines of metadata stacked linewise directly on top of the
block. These lines populate the properties of the block, such as the ID, title, and options. These meta­
data lines are as follows:

• Zero or more block attribute lines (which populate the block’s attributes)

• An optional block anchor line

• An optional block title line (many blocks also support a corresponding caption)

• An optional ID

• An optional set of roles

• An optional set of options


If the first line of a block begins with [and ends with], that line will be interpret­
ted as a block attribute line. It does not matter what text is contained between
those brackets. For example, if the first description list term starts with [and defi­

Block commonalities | 13

nition on the same line ends with], it will not appear to the parser as a description
list entry, but rather as a block attribute line. To workaround this interpretation of
the source, you need to move the trailing] (and whatever goes with it) to the next
line.

For example, consider a sidebar block with a title and ID:

.Styles of music
[#music-styles]

Go off on a tangent to describe what a style of music is.

When it comes to processing content, blocks split off into different groups. These groups are pri­
marily associated with the block’s content model.

Paragraph blocks and verbatim blocks have an implicit and modifiable set of substitutions. Substi­
tutions do not apply to compound blocks (i.e., blocks that may contain nested blocks).

Delimited Blocks
In AsciiDoc, a delimited block is a region of content that’s bounded on either side by a pair of con­
gruent linewise delimiters. A delimited block is used either to enclose other blocks (e.g.., multiple
paragraphs) or set the content model of the content (e.g., verbatim). Delimited blocks are a subset of
all block types in AsciiDoc.

Overview

Delimited blocks are defined using structural containers, which are the fixed set of recognized
block enclosures in the AsciiDoc syntax. Here’s the structural container for a literal block:

....
This text will be treated as verbatim content.
....

A structural container has an opening delimiter and a closing delimiter. The opening delimiter fol­
lows the block metadata, if present. Leading and trailing empty lines in a structure container are
not considered significant and are automatically removed. The remaining lines define a block’s
content.

These enclosures not only define the boundaries of a block’s content, but also imply a content
model (e.g., verbatim content or a subtree). In certain cases, they provide a mechanism for nesting
blocks. However, delimited blocks cannot be interleaved.

A delimited block has the unique ability of being able to be repurposed by the AsciiDoc syntax,
through both built-in mappings and mappings for custom blocks defined by an extension. To under­
stand how delimited blocks work, it’s important to understand structural containers, their linewise

14 | Delimited Blocks

delimiters, their default contexts, and their expected content models, as well as block nesting and
masquerading.

Linewise delimiters

A delimited block is characterized by a pair of congruent linewise delimiters. The opening and clos­
ing delimiter must match exactly, both in length and in sequence of characters. These delimiters,
sometimes referred to as fences, enclose the content and explicitly mark its boundaries. Within the
boundaries of a delimited block, you can enter any content or empty lines. The block doesn’t end
until the ending delimiter is found. The block metadata (block attribute and anchor lines) goes
above the opening delimiter (thus outside the delimited region).

Here’s an example of a delimited example block:

====
This is an example of an example block.
That's so meta.
====

Typically, the delimiter is written using the minimum allowable length (4 characters, with the
exception of the open block, which currently has a fixed length of 2 characters). The length of the
delimiter lines can be varied to accommodate nested blocks.

The valid set of delimiters for defining a delimited block, and the meaning they have, is defined by
the available structural containers, covered next.

Structural containers

Structural containers are the fixed set of recognized block enclosures (delimited regions) defined by
the AsciiDoc language. These enclosures provide a reusable building block in the AsciiDoc syntax.
By evaluating the structural container and the block metadata, the processor will determine which
kind of block to make.

Each structural container has an expected content model. For built-in blocks, it’s the context of the
block that determines the content model, though most built-in blocks adhere to the expected con­
tent model. Custom blocks have the ability to designate the content model. Even in these cases,
though, the content model should be chosen to honor the semantics of the structural container.

Some structural containers are reused for different purposes, such as the structural container for
the quote block being used for a verse block.

Summary of structural containers

The table below lists the structural containers, documenting the name, default context, and delim­
iter line for each.

Structural containers in AsciiDoc

Delimited Blocks | 15

Type Default context Content model (expected) Minimum delimiter

comment n/a n/a ////

example :example compound ====

listing :listing verbatim ----

literal :literal verbatim

open :open compound --

sidebar :sidebar compound ****

table :table table |===
,===
:===
!===

pass :pass raw ++++

quote :quote compound ____

You may notice the absence of the source block. That’s because source is not a container type.
Rather, it’s a specialization of the listing (or literal) container as designated by the block style. The
verse and admonition blocks are also noticeably absent. That’s because they repurpose the struc­
tural containers for quote and example blocks, respectively.

The default context is assumed when an explicit block style is not present.

Currently, table is a specialized structural container that cannot be enlisted as a custom block.

Unlike other structural containers, a comment block is not preserved in the parsed document and
therefore doesn’t have a context or content model.



When creating a custom block, it’s important to choose a structural container that
provides the right content model. This allows a text editor to understand how to
parse the block and provide a reasonable fallback when the extension is not
loaded.

Structural containers are used to define delimited blocks. The structural container provides a
default context and expected content model, but the actual context and content model is deter­
mined after considering the metadata on the block (specifically the declared block content).

Nesting blocks

Using delimited blocks, you can nest blocks inside of one other. (Blocks can also be nested inside
sections, list items, and table cells, which is a separate topic).

First, the parent block must have the compound content model. The compound content model
means that the block’s content is a sequence of zero or more blocks.

When nesting a block that uses a different structural container from the parent, it’s enough to
ensure that the child block is entirely inside the parent block. Delimited blocks cannot be inter­

16 | Delimited Blocks

leaved.

====
Here's a sample AsciiDoc document:

= Document Title
Author Name

Content goes here.

The document header is useful, but not required.
====

When nesting a delimited block that uses the same structural container, it’s necessary to vary the
length of the delimiter lines (i.e., make the length of the delimiter lines for the child block different
than the length of the delimiter lines for the parent block). Varying the delimiter line length allows
the parser to distinguish one block from another.

====
Here are your options:

.Red Pill
[%collapsible]
======
Escape into the real world.
======

.Blue Pill
[%collapsible]
======
Live within the simulated reality without want or fear.
======
====

The delimiter length for the nested structural container can either be shorter or longer than the
parent. That’s a personal style choice.

Build a Basic Block

Build a delimited block

In this section, we’ll create a delimited sidebar block. The delimiter for the sidebar style is four
asterisks (****).

1. Enter the opening delimiter at the beginning of a new line and then press Enter .

Build a Basic Block | 17

Text in your document.

2. On the new line, enter your content, such as paragraphs, delimited blocks, directives, and
macros. The delimited block’s style will be applied to all of this content until the closing delim­
iter.

Text in your document.

This is content in a sidebar block.

image::name.png[]

This is more content in the sidebar block.

3. To end the delimited block, press Enter at the end of your last line of content. On the new line,
type the closing delimiter.

Text in your document.

This is content in a sidebar block.

image::name.png[]

This is more content in the sidebar block.

That’s it. You’ve built a delimited block.

Build a block from a paragraph

In some cases, you can style a block using the style’s name. If the content is contiguous (not inter­
rupted by empty lines or comment lines), you can assign the block style’s name in an attribute list
placed above the content. This format is often used for single-line listings:

[listing]
sudo dnf install asciidoc

or single-line quotes:

[quote]

18 | Build a Basic Block

Never do today what you can put off `'til tomorrow.

However, note that the lines of a styled paragraph are first parsed like a paragraph, then promoted
to the specified block type. That means that line comments will be dropped, which can impact ver­
batim blocks such as a listing block. Thus, the delimited block form is preferred, especially when
creating a verbatim block.

Summary of built-in blocks

The following table identifies the built-in block styles, their delimiter syntax, purposes, and the sub­
stitutions performed on their contents.

Block Block Name Delimiter Purpose Substitu­
tions

Paragraph n/a n/a Regular paragraph content (i.e., prose),
offset on either side by an empty line.
Must start flush to the left margin of the
document. The block name can be used
to convert the paragraph into most other
blocks.

Normal

Literal para­
graph

n/a n/a A special type of paragraph block for lit­
eral content (i.e., preformatted text). Must
be indented from the left margin of the
document by at least one space. Often
used as a shorthand for a literal delim­
ited block when the content does not con­
tain any empty lines.

Verbatim

Admonition [<LABEL>] ==== Aside content that demands special atten­
tion; often labeled with a tag or icon

Normal

Comment n/a //// Private notes that are not displayed in the
output

None

Example [example] ==== Designates example content or defines an
admonition block

Normal

Fenced n/a ``` Source code or keyboard input is dis­
played as entered. Will be colorized by
the source highlighter if enabled on the
document and a language is set.

Verbatim

Listing [listing] ---- Source code or keyboard input is dis­
played as entered

Verbatim

Literal [literal] Output text is displayed exactly as
entered

Verbatim

Open Most block
names

-- Anonymous block that can act as any
block except passthrough or table blocks

Varies

Build a Basic Block | 19

Block Block Name Delimiter Purpose Substitu­
tions

Passthrough [pass] ++++ Unprocessed content that is sent directly
to the output

None

Quote [quote] ____ A quotation with optional attribution Normal

Sidebar [sidebar] **** Aside text and content displayed outside
the flow of the document

Normal

Source [source] ---- Source code or keyboard input to be dis­
played as entered. Will be colorized by
the source highlighter if enabled on the
document and a language is set.

Verbatim

Stem [stem] ++++ Unprocessed content that is sent directly
to an interpreter (such as AsciiMath or
LaTeX math)

None

Table n/a |=== Displays tabular content Varies

Verse [verse] ____ A verse with optional attribution Normal

Add a Title to a Block
You can assign a title to a block, whether it’s styled using its style name or delimiters.

Block title syntax

A block title is defined on its own line directly above the block’s attribute list, opening delimiter, or
block content—which ever comes first. As shown in Example 4, the line must begin with a dot (.)
and immediately be followed by the text of the title. The block title must only occupy a single line
and thus cannot be wrapped.

Example 4. Block title syntax

.This is the title of a sidebar block

This is the content of the sidebar block.


The block title line should not be confused with an ordered list item that uses the .
marker. A block title line has no space after the ., whereas the space after a list
marker is required.

The next sections will show how to add titles to delimited blocks and blocks with attribute lists.

Add a title to a delimited block

Any delimited block can have a title. If the block doesn’t have an attribute list, enter the title on a

20 | Add a Title to a Block

new line directly above the opening delimiter. The delimited literal block in Example 5 is titled Ter­
minal Output.

Example 5. Add a title to a delimited block

.Terminal Output ①

.... ②
From github.com:asciidoctor/asciidoctor
 * branch main -> FETCH_HEAD
Already up to date.
....

① The block title is entered on a new line. The title must begin with a dot (.). Don’t put a space
between the dot and the first character of the title.

② If you aren’t applying attributes to a block, enter the opening delimiter on a new line directly
after the title.

The result of Example 5 is displayed below.

Terminal Output

From github.com:asciidoctor/asciidoctor
 * branch main -> FETCH_HEAD
Already up to date.

In the next section, you’ll see how a title is placed on a block that has an attribute list.

Add a title to a block with attributes

When you’re applying attributes to a block, the title is placed on the line above the attribute list (or
lists). Example 6 shows a delimited source code block that’s titled Specify GitLab CI stages.

Example 6. Add a title to a delimited source code block

.Specify GitLab CI stages ①
[source,yaml] ②

image: node:16-buster
stages: [init, verify, deploy]

① The block title is entered on a new line.

② The block’s attribute list is entered on a new line directly after the title.

The result of Example 6 is displayed below.

Specify GitLab CI stages

image: node:16-buster

Add a Title to a Block | 21

stages: [init, verify, deploy]

As shown in Example 7, a block’s title is placed above the attribute list when a block isn’t delimited.

Example 7. Add a title to a non-delimited block

.Mint
[sidebar]
Mint has visions of global conquest.
If you don't plant it in a container, it will take over your garden.

The result of Example 7 is displayed below.

Mint

Mint has visions of global conquest. If you don’t plant it in a container, it will take over your
garden.

You may notice that unlike the titles in the previous rendered listing and source block examples, the
sidebar’s title is centered and displayed inside the sidebar’s background. How the title of a block is
displayed depends on the converter and stylesheet you’re applying to your AsciiDoc documents.

Captioned titles

Several block contexts support captioned titles. A captioned title is a title that’s prefixed with a
caption label and a number followed by a dot (e.g., Table 1. Properties).

The captioned title is only used if the corresponding caption attribute is set. Otherwise, the original
title is displayed.

The following table lists the blocks that support captioned titles and the attributes that the con­
verter uses to generate and control them.

Blocks that support captioned titles

Block context Caption attribute Counter attribute

appendix appendix-caption appendix-number

example example-caption example-number

image figure-caption figure-number

listing, source listing-caption listing-number

table table-caption table-number

All caption attributes are set by default except for the attribute for listing and source blocks (list­
ing-caption). The number is sequential, computed automatically, and stored in a corresponding
counter attribute.

22 | Add a Title to a Block

Let’s assume you’ve added a title to an example block as follows:

.Block that supports captioned title
====
Block content
====

The block title will be displayed with a caption label and number, as shown here:

Example 1. Block that supports captioned title

Block content

If you unset the example-caption attribute, the caption will not be prepended to the title.

Block that supports captioned title

Block content

The counter attribute (e.g., example-number) can be used to influence the start number for the first
block with that context or the next number selected in the sequence for subsequent occurrences.
However, this practice should be used judiciously.

The caption can be overridden using the caption attribute on the block. The value of the caption
attribute replaces the entire caption, including the space that precedes the title.

Here’s how to define a custom caption on a block:

.Block Title
[caption="Example {counter:my-example-number:A}: "]
====
Block content
====

Here’s how the block will be displayed with the custom caption:

Example A: Block Title

Block content

Notice we’ve used a counter attribute in the value of the caption attribute to create a custom num­
ber sequence.

If you refer to a block with a custom caption using an xref, you may not get the result that you
expect. Therefore, it’s always best to define custom xreftext when you define a custom caption.

Add a Title to a Block | 23

Assign an ID
You can assign an ID to any block using an attribute list. Once you’ve assigned an ID to a block, you
can use that ID to link to it using a cross reference.

Block ID syntax

An ID is assigned to a block by prefixing the ID value with a hash (#) and placing it in the block’s
attribute list.

[#the-id-of-this-block]
====
Content of delimited example block
====

Let’s go through some examples of assigning an ID to a block with several attributes, a title, and
delimiters.

Assign an ID to a block with attributes

In this section, we’ll assign an ID to this blockquote:

Roads? Where we’re going, we don’t need roads.

— Dr. Emmett Brown, Back to the Future

When the style attribute is explicitly assigned to a block, the style name is always placed in the first
position of the attribute list. Then, the ID is attached directly to the end of the style name.

The blockquote with an assigned style and ID in Example 8 shows this order of attributes.

Example 8. Assign a style and ID to a block

[quote#roads]
Roads? Where we're going, we don't need roads.

Since Example 8 is a blockquote it should have some attribution and citation information. In Exam­
ple 9, let’s attribute this quote to its speaker and original context using the positional attribution
attributes that are built into the quote style.

Example 9. Assign a style, ID, and positional attributes to a block

[quote#roads,Dr. Emmett Brown,Back to the Future]
Roads? Where we're going, we don't need roads.

Except when the role and options attributes are assigned values using their shorthand syntax (.
and %, respectively), all other block attributes are typically separated by commas (,).

24 | Assign an ID

Block Masquerading
The declared block style (i.e., the first positional attribute of the block attribute list) can be used to
modify the context of any paragraph and most structural containers. This practice is known as
block masquerading (meaning to disguise one block as another).

When the context of a paragraph is changed using the declared block style, the block retains the
simple content model. When masquerading the context of a structural container, only contexts that
preserve the expected content model are permitted.

How it works

If the block style declared on a block matches the name of a context, it sets the context of the block
to that value and the resolved block style will be left unset. If the declared block style does not
match the name of a context, it will either specialize the context or set the context implicitly and
also specialize that context. How the declared block style is handled for a custom block is up to the
extension, though a similar process takes place.

Let’s consider the case of using the declared block style to change the context of a structural con­
tainer. In this case, we’re using the declared block style to change a literal block to a listing block.

[listing]
....
a > b
....

Even though the default context for the structural container is :literal, the declared block style
changes it to :listing. The resolved block style of the block remains unset.

The declared block style can also be used to transform a paragraph into a different kind of block.
The block will still retain the simple content model. Let’s consider the case of turning a normal
paragraph into a sidebar.

[sidebar]
This sidebar is short, so a styled paragraph will do.

Finally, let’s consider an admonition block. Declaring the NOTE block style on an example struc­
tural container transforms it to an admonition block and also sets the style of the block to NOTE.

[NOTE]
====
Remember the milk.
====

This technique also works for converting a paragraph into an admonition block.

Block Masquerading | 25

[NOTE]
Remember the milk.

Where permitted, the declared block style can be used to specialize the context of the block, change
the context of the block, or both.

Built-in permutations

The table below lists the structural containers whose context can be altered, and which contexts are
valid, using the declared block style.

Type Default context Masquerading contexts

example :example admonition (designated by the NOTE, TIP, WARNING, CAU­
TION, or IMPORTANT style)

listing :listing literal

literal :literal listing (can be designated using the source style)

open :open abstract, admonition (designated by the NOTE, TIP, WARN­
ING, CAUTION, or IMPORTANT style), comment, example,
literal, listing (can be designated using the source style),
partintro, pass, quote, sidebar, verse

pass :pass stem, latexmath, asciimath

sidebar :sidebar n/a

quote :quote verse

All the contexts that can be applied to an open block can also be applied to a paragraph. A para­
graph also access the normal style, which can be applied to revert a literal paragraph to a normal
paragraph.

Troubleshooting Blocks

Opening and closing delimiters

The opening and closing delimiters of a delimited block must be the same length. For example, a
sidebar is specified by an opening delimiter of four asterisks (****). Its closing delimiter must also
be four asterisks (****).

Here’s a sidebar using valid delimiter lengths:

This is a valid delimited block.
It will be styled as a sidebar.

26 | Troubleshooting Blocks

However, the delimiter lengths in the following delimited block are not equal in length and there­
fore invalid:

This is an invalid sidebar block because the delimiter lines are different lengths.

When an AsciiDoc processor encounters the previous example, it will put the remainder of the con­
tent in the document inside the delimited block. As far as the processor is concerned, the closing
delimiter is just a line of content. However, the processor will issue a warning if a matching closing
delimiter is never found.

If you want the processor to recognize a closing delimiter, it must be the same length as the opening
delimiter.

Troubleshooting Blocks | 27

Document Attributes
Each document holds a set of name-value pairs called document attributes. These attributes pro­
vide a means of configuring the AsciiDoc processor, declaring document metadata, and defining
reusable content. This page introduces document attributes and answers some questions about the
terminology used when referring to them.

What are document attributes?
Document attributes are effectively document-scoped variables for the AsciiDoc language. The Asci­
iDoc language defines a set of built-in attributes, and also allows the author (or extensions) to
define additional document attributes, which may replace built-in attributes when permitted.

Built-in attributes either provide access to read-only information about the document and its envi­
ronment or allow the author to configure behavior of the AsciiDoc processor for a whole document
or select regions. Built-in attributes are effectively unordered. User-defined attribute serve as a
powerful text replacement tool. User-defined attributes are stored in the order in which they are
defined.

Here’s a summary of some of the things document attributes are used for:

• Provide access to document information

• Define document metadata

• Turn on or turn off built-in features

• Configure built-in features

• Declare the location of assets, like images

• Store content for reuse throughout a document

Let’s look closer at the different types of document attributes.

Types of document attributes
Document attributes fall into the following groups.

Built-in attributes

Built-in attributes add, configure, and control common features in a document. Many built-in
attributes only take effect when defined in the document header with an attribute entry.

Boolean attributes are a subgroup of the built-in attribute. If a boolean attribute is defined, but
not given a value (i.e., set), it’s in the "on" state. If the attribute is not defined (i.e., not set), it’s in
the "off" state. In that regard, these attributes act as a switch. Their sole function is to turn on or
turn off a feature.

User-defined attributes

A user-defined attribute is any attribute that the author sets that isn’t reserved by the AsciiDoc
language or an extension. Most of the time, user-defined attributes are used as a text replace­

28 | What are document attributes?

ment tool. These attributes allow the author to define named, reusable content. Thus, instead of
having to repeat text throughout the document, such as a product name, that text can be defined
in an attribute and referenced by its name instead. This technique helps to keep the document
DRY, which stands for “Don’t Repeat Yourself”.

What does defining a document attribute mean?
• have default values in the case of built-in attributes

• have no value in the case of boolean attributes and built-in attributes with default values

• have a single line value

• have a value that spans multiple, contiguous lines

• have a value that includes basic inline AsciiDoc syntax, such as:

◦ attribute references

◦ text formatting (if wrapped in a pass macro)

◦ inline macros (if wrapped in a pass macro)

But there are certain limitations to be aware of. Document attributes cannot:

• have a value that includes AsciiDoc block content, such as:

◦ lists

◦ multiple paragraphs

◦ blocks (tables, sidebars, examples, etc)

◦ other whitespace-dependent markup

What does setting a document attribute mean?
• be set (turned on)

What does unsetting a document attribute mean?
• be unset (turned off) with a leading (preferred) or trailing ! added to the name

Where are document attributes defined, set, and
unset?
Document attributes can be declared in the:

• document header as an attribute entry

• document body as an attribute entry

• API via the :attributes option

• CLI via the -a option

What does defining a document attribute mean? | 29

• override locked attributes assigned from the command line

What does referencing a document attribute mean?
Referencing a document attribute means replacing an attribute name with that attribute’s value. A
document attribute can be referenced in the document using the syntax {name}, where name is the
name of the attribute.

Where can document attributes be referenced?
A document attribute can be referenced anywhere in the document where the attributes substitu­
tion is applied. Generally speaking, the attributes substitution is applied to the value of an attribute
entry, titles, paragraph text, list text, the value of an element attribute, and the target of a macro.

A document attribute can only be referenced after it has been defined.

Attribute Entries

What is an attribute entry?

Before you can use a document attribute in your document, you have to declare it. An attribute
entry is the primary mechanism for defining a document attribute in an AsciiDoc document. You
can think of an attribute entry as a global variable assignment for AsciiDoc. The document attribute
it creates becomes available from that point forward in the document. Attribute entries are also fre­
quently used to toggle features.

An attribute entry consists of two parts: an attribute name and an attribute value. The attribute
name comes first, followed by the optional value. Each attribute entry must be entered on its own
line. An attribute entry starts with an opening colon (:), directly followed by the attribute’s name,
and then a closing colon (:). This sets — that is, turns on — the document attribute so you can use it
in your document.

:name-of-an-attribute: ①

① The attribute’s name is directly preceded with a opening colon (:) and directly followed by a
closing colon (:).

In many cases, you explicitly assign a value to a document attribute by entering information after
its name in the attribute entry. The value must be offset from the closing colon (:) by at least one
space.

:name-of-an-attribute: value of the attribute ①

① An explicitly assigned value is offset from the closing colon (:) by at least one space. At the end
of the value, press Enter .

Take note that header substitutions automatically get applied to the value by default. That means

30 | What does referencing a document attribute mean?

you don’t need to escape special characters such in an HTML tag. It also means you can reference
the value of attributes which have already been defined when defining the value of an attribute.
Attribute references in the value of an attribute entry are resolved immediately.

:url-org: https://example.org/projects
:url-project: {url-org}/project-name ①

① You can reuse the value of an attribute which has already been set using using an attribute ref­
erence in the value.

Some built-in attributes don’t require a value to be explicitly assigned in an attribute entry because
they’re a boolean attribute or have an implied value.

:name-of-an-attribute: ①

① If you don’t want to explicitly assign a value to the attribute, press Enter after the closing colon (
:).

When set, the value of a built-in boolean attribute is always empty (i.e., an empty string). If you set a
built-in attribute and leave its value empty, the AsciiDoc processor may infer a value at processing
time.

Where can an attribute entry be declared?

An attribute entry is most often declared in the document header. For attributes that allow it
(which includes general purpose attributes), the attribute entry can alternately be declared
between blocks in the document body (i.e., the portion of the document below the header).



An attribute entry should not be declared inside the boundaries of a delimited
block. When an attribute entry is declared inside a delimited block, the behavior is
undefined. What’s certain is that preprocessor directives (i.e., include directive,
conditional directives) cannot see attributes defined inside a delimited block.

When an attribute is defined in the document header using an attribute entry, that’s referred to as a
header attribute. A header attribute is available to the entire document until it is unset. A header
attribute is also accessible from the document metadata for use by built-in behavior, extensions,
and other applications that need to consult its value (e.g., source-highlighter).

When an attribute is defined in the document body using an attribute entry, that’s simply referred
to as a document attribute. For any attribute defined in the body, the attribute is available from the
point it is set until it is unset. Attributes defined in the body are not available via the document
metadata.

Unless the attribute is locked, it can be unset or assigned a new value in the document header or
body. However, note that unsetting or redefining a header attribute that controls behavior in the
document body usually has no affect. See the Document Attributes Reference for where in a docu­
ment each attribute can be set.

Attribute Entries | 31

Defining document attributes without an attribute entry

Document attributes can also be declared (set with an optional value or unset) outside the docu­
ment via the CLI and API. The attribute entry syntax is not used in these cases. Rather, they are
declared using the provided option. For the API, attributes are declared using the :attributes
option (which supports various entry formats). For the CLI, the attribute is declared using the -a
option.

When an attribute is assigned a value outside of the document, the value is stored as is, meaning
substitutions are not applied to it. That also means that the special characters and quote substitu­
tions are not applied to the value of that attribute when it is referenced in the document. However,
subsequent substitutions, such as the macro substitution, do get applied. This behavior is due to
that fact that the attributes substitution is applied after the special characters and quote substitu­
tions. In order to force these substitutions to be applied to the value of the attribute, you must alter
the substitution order at the point of reference. Here’s an example using the inline pass macro.

pass:a,q[{attribute-with-formatted-text}]

When an attribute is declared from the command line or API, it is implicitly a document header
attribute. By default, the attribute becomes locked (i.e., hard set or unset) and thus cannot be
changed by the document. This behavior can be changed by adding an @ to the end of the attribute
name or value (i.e., the soft set modifier). See Attribute Assignment Precedence for more informa­
tion.

The one exception to this rule is the sectnums attribute, which can always be changed.

Attribute Entry Names and Values

Valid built-in names

Built-in attribute names are reserved and can’t be re-purposed for user-defined attribute names.
The built-in attribute names are listed in the Document Attributes Reference and Character
Replacement Attributes Reference.

Valid user-defined names

User-defined attribute names must:

• be at least one character long,

• begin with a word character (a-z, 0-9, or _), and

• only contain word characters and hyphens (-).

A user-defined attribute name cannot contain dots (.) or spaces. Although uppercase characters are
permitted in an attribute name, the name is converted to lowercase before being stored. For exam­
ple, URL-REPO and URL-Repo are treated as url-repo when a document is loaded or converted. A best
practice is to only use lowercase letters in the name and avoid starting the name with a number.

32 | Attribute Entries

Attribute value types and assignment methods

Depending on the attribute, its value may be an empty string, an integer such as 5 or 2, or a string
of characters like your name or a URL. Attributes that accept string values may include references
to other attributes and inline macros. Values can’t contain complex, multi-line block elements such
as tables or sidebars.

An attribute’s value may be assigned by default when the value is left empty in an attribute entry or
the value may be assigned explicitly by the user. The type of value an attribute accepts and whether
it uses a default value, has multiple built-in values, accepts a user-defined value, or requires a value
to be explicitly assigned depends on the attribute.

Built-in values

Many built-in attributes have one or more built-in values. One of these values may be designated as
the attribute’s default value. The AsciiDoc processor will fall back to this default value if you set the
attribute but leave the value empty. Additionally, the processor automatically sets numerous built-
in attributes at processing time and assigns them their default values unless you explicitly unset the
attribute or assign it another value. For instance, the processor automatically sets all of the charac­
ter replacement attributes.

If you want to use the non-default value of a built-in attribute, you need to set it and assign it an
alternative value.

Empty string values

The value for built-in boolean attributes is always left empty in an attribute entry since these attrib­
utes only turn on or turn off a feature. During processing, the AsciiDoc processor assigns any acti­
vated boolean attributes an empty string value.

Explicit values

You must explicitly assign a value to an attribute when:

• it doesn’t have a default value,

• you want to override the default value, or

• it’s a user-defined attribute.

The type of explicit value a built-in attribute accepts depends on the attribute. User-defined attrib­
utes accept string values. Long explicit values can be wrapped.

Wrap Attribute Entry Values

Soft wrap attribute values

If the value of a document attribute is too long to fit on the screen, you can split the value across
multiple lines with a line continuation to make it easier to read.

A line continuation consists of a space followed by a backslash character (\) at the end of the line.
The line continuation must be placed on every line of a multiline value except for the last line.

Attribute Entries | 33

Lines that follow a line continuation character may be indented, but that indentation will not be
included in the value.

When the processor reads the attribute value, it folds the line continuation, the newline, and any
ensuing indentation into a single space. In this case, we can say that the attribute value has soft
wraps.

Let’s assume we want to define an attribute named description that has a very long value. We can
split this attribute up across multiple lines by placing a line continuation at the end of each line of
the value except for the last.

Example 10. A multiline attribute value with soft wraps

:description: If you have a very long line of text \
that you need to substitute regularly in a document, \
you may find it easier to split the value neatly in the header \
so it remains readable to folks looking at the AsciiDoc source.

If the line continuation is missing, the processor will assume it has found the end of the value and
will not include subsequent lines in the value of the attribute.

Hard wrap attribute values

You can force an attribute value to hard wrap by inserting a hard line break replacement in front of
the line continuation. A hard line break replace is a space followed by a plus character (+).

As described in the previous section, the line continuation, newline, and ensuing indentation is nor­
mally replaced with a space. This would prevent the hard line break replacement from being recog­
nized. However, the processor accounts for this scenario and leaves the newline intact.

Let’s assume we want to define an attribute named haiku that requires hard line breaks. We can
split this attribute up across multiple lines and preserve those line breaks by placing a hard line
break replacement followed by a line continuation at the end of each line of the value except for
the last.

Example 11. A multiline attribute value with hard wraps

:haiku: Write your docs in text, + \
AsciiDoc makes it easy, + \
Now get back to work!

This syntax ensures that the newlines are preserved in the output as hard line breaks.

Attribute Entry Substitutions

The AsciiDoc processor automatically applies substitutions from the header substitution group to
the value of an attribute entry prior to the assignment, regardless of where the attribute entry is
declared in the document. The header substitution group, which replaces special characters fol­
lowed by attribute references, is applied to the values of attribute entries, regardless of whether the

34 | Attribute Entries

entries are defined in the header or in the document body. This is the same group that gets applied
to metadata lines (author and revision information) in the document header.

That means that any inline formatting in an attribute value isn’t interpreted because:

1. inline formatting is not applied when the AsciiDoc processor sets an attribute, and

2. inline formatting is not applied when an attribute is referenced since the relevant substitutions
come before attributes are resolved.

Change substitutions when assigning a value

If you want the value of an attribute entry to be used as is (not subject to substitutions), or you
want to alter the substitutions that are applied, you can enclose the value in the inline pass macro
(i.e., pass:[]). The inline pass macro accepts a list of zero or more substitutions in the target slot,
which can be used to control which substitutions are applied to the value. If no substitutions are
specified, no substitutions will be applied.

In order for the inline macro to work in this context, it must completely surround the attribute
value. If it’s used anywhere else in the value, it will be ignored.

Here’s how to prevent substitutions from being applied to the value of an attribute entry:

:cols: pass:[.>2,.>4]

This might be useful if you’re referencing the attribute in a place that depends on the unaltered
text, such as the value of the cols attribute on a table.

Here’s how we can apply the quotes substitution to the value of an attribute entry:

:app-name: pass:quotes[MyApp^2^]

Internally, the value is stored as MyApp². You can inspect the value stored in an attribute
using this trick:

[subs=attributes+]

{app-name}

You can also specify the substitution using the single-character alias, q.

:app-name: pass:q[MyApp^2^]

The inline pass macro kind of works like an attribute value preprocessor. If the processor detects
that an inline pass macro completely surrounds the attribute value, it:

Attribute Entries | 35

1. reads the list of substitutions from the target slot of the macro

2. unwraps the value from the macro

3. applies the substitutions to the value

If the macro is absent, the value is processed with the header substitution group.

Substitutions for attributes defined outside the document

Unlike attribute entries, substitutions are not applied to the value of an attribute passed in to the
AsciiDoc processor. An attribute can be passed into the AsciiDoc processor using the -a CLI option
or the :attributes API option. When attributes are defined external to the document, the value
must be prepared so it’s ready to be referenced as is. If the value contains XML special characters,
that means those characters must be pre-escaped. The exception would be if you intend for
XML/HTML tags in the value to be preserved. If the value needs to reference other attributes, those
values must be pre-replaced.

Let’s consider the case when the value of an attribute defined external to the document contains an
ampersand. In order to reference this attribute safely in the AsciiDoc document, the ampersand
must be escaped:

$ asciidoctor -a equipment="a bat & ball" document.adoc

You can reference the attribute as follows:

To play, you'll need {equipment}.

If the attribute were to be defined in the document, this escaping would not be necessary.

:equipment: a bat & ball

That’s because, in contrast, substitutions are applied to the value of an attribute entry.

Change substitutions when referencing an attribute

You can also change the substitutions that are applied to an attribute at the time it is resolved. This
is done by manipulating the substitutions applied to the text where it is referenced. For example,
here’s how we could get the processor to apply quote substitutions to the value of an attribute:

:app-name: MyApp^2^

[subs="specialchars,attributes,quotes,replacements,macros,post_replacements"]
The application is called {app-name}.

Notice that we’ve swapped the order of the attributes and quotes substitutions. This strategy is akin
to post-processing the attribute value.

36 | Attribute Entries

Inline Attribute Entries

An attribute reference can be used to set or unset an attribute inline as an alternative to a dedi­
cated attribute entry line. This mechanism allows you to set or unset an attribute in places where
attribute entries lines are not permitted, such as in a normal table cell or a list item.



You’re strongly discouraged from using inline attribute entries unless you under­
stand their limitations or they are a last resort for fulfilling a use case. It’s very
likely that this functionality will be removed from the AsciiDoc language since its
behavior is difficult to define.

Attributes can be defined inline using the following notation:

{set:name:value}

The value segment is optional. If absent, the value defaults to empty string. In that case, the nota­
tion is reduced to:

{set:name}

If you add a ! character after the name to unset the attribute instead:

{set:name!}

Here’s an example that uses an inline attribute entry to set the sourcedir attribute to the value
src/main/java.

{set:sourcedir:src/main/java}

This assignment is effectively the same as:

:sourcedir: src/main/java

However, it’s important to understand that inline attribute assignments are processed in a different
phase than attribute entry lines. Inline attribute entries are processed when attribute references
are replaced, as part of the attributes substitution. Therefore, the result of the assignment is only
available to attribute references that follow it. These assignments are not visible in the document
model after the document has been loaded.

Declare Built-In Attributes
An AsciiDoc processor has numerous attributes reserved for special purposes. Built-in attributes
add, configure, and control common features in a document. Many built-in attributes only take

Declare Built-In Attributes | 37

effect when defined in the document header with an attribute entry.

Use an attribute’s default value

Many built-in attributes have a default value. When you want to activate a built-in attribute and
assign it its default value, you can leave the value in the attribute entry empty.

For example, to turn on the Table of Contents for a document, you set the toc attribute using an
attribute entry in the document header.

= Title of Document
:toc:

The default value of an activated attribute will be assigned at processing time, if:

1. it has a default value, and

2. the value in the attribute entry is left empty

In the example above, the default value of auto will be assigned to toc since the value was left
empty in the attribute entry.

Override an attribute’s default value

You may not want to use the default value of a built-in attribute. In the next example, we’ll override
the default value of an attribute that the AsciiDoc processor sets automatically. The built-in
attribute doctype is automatically set and assigned a value of article at processing time. However, if
you want to use AsciiDoc’s book features, the doctype attribute needs to be assigned the book value.

= Title of My Document
:doctype: book ①

① Set doctype in the document header and assign it the value book. Explicit values must be offset
from the closing colon (:) by at least one space.

To override an attribute’s default value, you have to explicitly assign a value when you set the
attribute. The value assigned to an attribute in the document header replaces the default value
(assuming the attribute is not locked via the CLI or API).

Override a default asset directory value

You can also use the built-in asset directory attributes to customize the base path to images (default:
empty), icons (default: ./images/icons), stylesheets (default: ./stylesheets) and JavaScript files
(default: ./javascripts).

Example 12. Replace the default values of the built-in asset directory attributes

= My Document
:imagesdir: ./images

38 | Declare Built-In Attributes

:iconsdir: ./icons
:stylesdir: ./styles
:scriptsdir: ./js

The four built-in attributes in the example above have default values that are automatically set at
processing time. However, in the example, they’re being set and assigned explicit values in the doc­
ument header. This explicit user-defined value replaces the default value (assuming the attribute is
not locked via the CLI or API).

Set Boolean Attributes

A boolean attribute is a built-in attribute that acts like a toggle. Its sole function is to turn on a fea­
ture or behavior.

Boolean attribute entry syntax

A boolean attribute is set using an attribute entry in the header or body of a document. The value of
a boolean value is always empty because boolean attributes in AsciiDoc only accept an empty string
value. In AsciiDoc, an attribute that is set, but has an empty value, is interpreted as the true state
and an attribute which is not set is interpreted as the false state. However, a processor may inter­
pret a value of true as the true state as well.

:name-of-a-boolean-attribute: ①

① On a new line, type a colon (:), directly followed by the attribute’s name and then another colon
(:). After the closing colon, press Enter . The attribute is now set and its behavior will be applied
to the document.

Declare a boolean attribute

Let’s use an attribute entry to turn on the built-in boolean attribute named sectanchors. When
sectanchors is set, it activates an anchor in front of a section title when a cursor hovers over it.

= Document Title
:sectanchors: ①

① The value of sectanchors is always left empty because it’s a boolean attribute.

Declare Custom Attributes
When you find yourself typing the same text repeatedly, or text that often needs to be updated, con­
sider creating your own attribute.

User-defined attribute names and values

A user-defined attribute must have a name and explicitly assigned value.

Declare Custom Attributes | 39

The attribute’s name must:

• be at least one character long,

• begin with a word character (A-Z, a-z, 0-9, or _), and

• only contain word characters and hyphens.

The name cannot contain dots or spaces.

Although uppercase characters are permitted in an attribute name, the name is converted to lower­
case before being stored. For example, URL and Url are treated as url. A best practice is to only use
lowercase letters in the name and avoid starting the name with a number.

Attribute values can:

• be any inline content, and

• contain line breaks, but only if an explicit line continuation (+) is used.

Create a custom attribute and value

A prime use case for attribute entries is to promote frequently used text and URLs to the top of the
document.

Example 13. Create a user-defined attribute and value

:disclaimer: Don't pet the wild Wolpertingers. If you let them into your system, we're
\ ①
not responsible for any loss of hair, chocolate, or purple socks.
:url-repo: https://github.com/asciidoctor/asciidoctor

① Long values can be soft wrapped using a backslash (\).

Now, you can reference these attributes throughout the document.

Unset Attributes
Document attributes—built-in, boolean, and custom—can be unset in the document header and
document body.

Unset a document attribute in the header

Document attributes are unset by adding a bang symbol (!) directly in front of (preferred) or after
the attribute’s name. Like when setting an attribute in a document header, the attribute entry must
be on its own line. Don’t add a value to the entry.

= Title
:!name: ①
:name!: ②

40 | Unset Attributes

① An attribute is unset when a ! is prefixed to its name (preferred).

② An attribute is unset when a ! is appended to its name.

Let’s use an attribute entry to turn off the built-in boolean attribute named sectids. The AsciiDoc
processor automatically sets sectids at processing time unless you unset it. The sectids attribute
generates an ID for each section from the section’s title.

Example 14. Unset a boolean attribute

= Document Title
:!sectids: ①

① On a new line, type a colon (:), directly followed by a bang symbol (!), the attribute’s name, and
then another colon (:). After the closing colon, press Enter . The attribute is now unset and its
behavior won’t be applied to the document.

Once an attribute is unset, its behavior is deactivated. When sectids is unset, the AsciiDoc proces­
sor will not generate IDs from section titles at processing time.

Let’s unset the built-in attribute example-caption. This is an attribute that is set and assigned a
default value of Example automatically by the AsciiDoc processor when you use an example block.

Example 15. Unset an automatically declared attribute

= Title
:!example-caption: ①

① Example blocks won’t be labeled and numbered, e.g., Example 1, because the attribute control­
ling that behavior is unset with the leading !.

Unset a document attribute in the body

Custom document attributes and some built-in document attributes can be turned off in the body of
the document using an attribute entry and the bang symbol (!) as described in the previous section.
For example, let’s say you set the section numbering attribute in the header of your document;
however, you don’t want the two sections midway through the document to be numbered. To dis­
able the numbering on these two sections, you’d unset sectnums before the first section you didn’t
want numbered and then reset it when you wanted the numbering to start again.

= Title
:sectnums: ①

== Section Title

:!sectnums: ②
== Section Title

=== Section Title

Unset Attributes | 41

:sectnums: ③
== Section Title

① The sectnums attribute is set in the header to activate section numbering throughout the docu­
ment.

② sectnums is unset by adding a ! to it’s name. The ! can be placed either before or after the
attribute’s name. The attribute entry must be placed on its own line. All of the sections below
where the attribute is unset will not be numbered.

③ sectnums is set and all subsequent sections will be numbered.

Reference Attributes
You’ll likely want to insert the value of a user-defined or built-in document attribute in various
locations throughout a document. To reference a document attribute for insertion, enclose the
attribute’s name in curly brackets (e.g., {name-of-attribute}). This inline element is called an
attribute reference. The AsciiDoc processor replaces the attribute reference with the value of the
attribute. To prevent this replacement, you can prefix the element with a backslash (e.g., \{name-of-
attribute}).

Reference a custom attribute

Before you can reference a custom (i.e., user-defined) attribute in a document, it must first be
declared using an attribute entry in the document header. In Example 16, we declare two user-
defined attributes that we’ll later be able to reference.

Example 16. Custom attributes set in the document header

= Ops Manual
:disclaimer: Don't pet the wild Wolpertingers. We're not responsible for any loss of
hair, chocolate, or purple socks.
:url-repo: https://github.com/asciidoctor/asciidoctor

Once you’ve set and assigned a value to a document attribute, you can reference that attribute
throughout your document. In Example 17, the attribute url-repo is referenced twice and dis­
claimer is referenced once.

Example 17. Custom attributes referenced in the document body

Asciidoctor is {url-repo}[open source]. ①

WARNING: {disclaimer} ②
If you're missing a lime colored sock, file a ticket in
the {url-repo}/issues[Asciidoctor issue tracker]. ③
(Actually, please don't).

① Attribute references can be used in macros.

② Attribute references can be used in blocks, such as admonitions, and inline. Since there isn’t an

42 | Reference Attributes

empty line between the disclaimer reference and the next sentence, the sentence will be directly
appended to the end of the attribute’s value when it’s processed.

③ The reference to the url-repo attribute is inserted to build the complete URL address, which is
interpreted as a URL macro.

As you can see below, the attribute references are replaced with the corresponding attribute value
when the document is processed.

Asciidoctor is open source.


Don’t pet the wild Wolpertingers. We’re not responsible for any loss of hair,
chocolate, or purple socks. If you’re missing a lime colored sock, file a ticket in
the Asciidoctor issue tracker. Actually, please don’t.

Reference a built-in attribute

A built-in document attribute (i.e., a document attribute which is automatically set by the proces­
sor) is referenced the same way as a custom (i.e., user-defined) document attribute. For instance, an
AsciiDoc processor automatically sets these supported character replacement attributes. That
means that you can reference them throughout your document without having to create an
attribute entry in its header.

TIP: Wolpertingers don't like temperatures above 100{deg}C. ①
Our servers don't like them either.

① Reference the character replacement attribute deg by enclosing its name in a pair of curly brack­
ets ({ and }).

As you can see below, the attribute reference is replaced with the attribute’s value when the docu­
ment is processed.


Wolpertingers don’t like temperatures above 100°C. Our servers don’t like them
either.

Escape an attribute reference

You may have a situation where a sequence of characters occurs in your content that matches the
syntax of an AsciiDoc attribute reference, but is not, in fact, an AsciiDoc attribute reference. For
example, if you’re documenting path templating, you may need to reference a replaceable section
of a URL path, which is also enclosed in curly braces (e.g., /items/{id}). In this case, you need a way
to escape the attribute reference so the AsciiDoc processor knows to skip over it. Otherwise, the
processor could warn about a missing attribute reference or perform an unexpected replacement.
AsciiDoc provides several ways to escape an attribute reference.

Reference Attributes | 43

https://github.com/asciidoctor/asciidoctor
https://github.com/asciidoctor/asciidoctor/issues

Prefix with a backslash

You can escape an attribute reference by prefixing it with a backslash. When the processor encoun­
ters this syntax, it will remove the backslash and pass through the remainder of what looks to be an
attribute reference as written.

In Example 18, the attribute reference is escaped using a backslash.

Example 18. An attribute reference escaped using a backslash

In the path /items/\{id}, id is a path parameter.

In the output of Example 18, we can see that the {id} expression in the path is preserved.

In the path /items/{id}, id is a path parameter.

Keep in mind that the backslash will only be recognized if the text between the curly braces is a
valid attribute name. If the syntax that follows the backslash does not match an attribute reference,
the backslash will not be removed during processing.

Enclose in a passthrough

You can also escape an attribute reference by enclosing it in an inline passthrough. In this case, the
processor uses the normal substitution rules for the passthrough type you have chosen.

In Example 19, the attribute reference is escaped by enclosing it in an inline passthrough.

Example 19. An attribute reference escaped by enclosing it in an inline passthrough

In the path +/items/{id}+, id is a path parameter.

In the output of Example 19, we can see that the {id} expression in the path is preserved.

In the path /items/{id}, id is a path parameter.

When using an inline passthrough, you don’t have to worry whether the curly braces form an
attribute reference or not. All the text between the passthrough enclosure will get passed through
to the output.

Alternative escape mechanisms

Attribute references are replaced by the attributes substitution. Therefore, wherever you can con­
trol substitutions, you can prevent attribute references from being replaced. This includes the
inline pass macro as well as the subs attribute on a block. See using passthroughs to prevent substi­
tutions for more details.

44 | Reference Attributes

Handle Unresolved References

When you reference a missing attribute (e.g., {does-not-exist}), the AsciiDoc processor will leave
the attribute reference behind. If you undefine an attribute on the same line as other text (e.g.,
{set:attribute-no-more!}), the processor will drop the whole line. You can tailor these behaviors
using the attribute-missing and attribute-undefined attributes. You’ll want to think about how you
want the processor to handle these situations and configure the processor accordingly.

Missing attribute

The attribute-missing attribute controls how missing references are handled. By default, missing
references are left behind so the integrity of the document is preserved and it’s easy for the author
to track down.

This attribute has four possible values:

skip

leave the reference in place (default setting)

drop

drop the reference, but not the line

drop-line

drop the line on which the reference occurs (matches behavior of AsciiDoc.py)

warn

print a warning about the missing attribute

The setting you might find of most interest is warn, which gives you a warning whenever the proces­
sor encounters an attribute reference that cannot be resolved, but otherwise leaves the line alone.

Consider the following line:

Hello, {name}!

Here’s how the line is handled in each case, assuming the name attribute is not defined:

attribute-missing value Result

skip Hello, {name}!

drop Hello, !

drop-line

warn asciidoctor: WARNING: skipping reference to missing attribute: XYZ



History

AsciiDoc.py always drops the line that contains a reference to a missing attribute
(effectively attribute-missing=drop-line). This “feature” was a side effect of how
the processor was implemented and not designed with the writer in mind. The

Reference Attributes | 45

behavior is frustrating for the writer because it’s hard to detect where its occur­
ring and can result in loss of important content. That’s why Asciidoctor uses a dif­
ferent default behavior and, further, allows the behavior to be customized.

There are a few cases where the attribute-missing attribute is not strictly honored. One of those
cases is the include directive. If a missing attribute is found in the target of an include directive, the
processor will issue a warning about the missing attribute and leave behind the same warning mes­
sage in the converted document.

Another case is the ifeval directive. A missing attribute reference can safely be used in the clause
of the ifeval directive without any side effects (i.e., drop) since the purpose of that statement is to
determine whether an attribute resolves to a value.

Forcing failure

If you want the processor to fail when the document contains a missing attribute, set the attribute-
missing attribute to warn and pass the --failure-level=WARN option to the CLI.

$ asciidoctor -a attribute-missing=warn --failure-level=WARN doc.adoc

The processor will convert the entire document, but the application will complete with a non-zero
exit status.

When using the API, you can consult the logger for the max severity of all messages reported or
look for specific messages in the stack. It’s up to the application code to decide how and when to
terminate the application.

Undefined attribute

The attribute-undefined attribute controls how an expression that undefines an attribute (e.g.,
{set:name!}) are handled. By default, the line containing the expression is dropped since the expres­
sion is intended to be a statement, not a content reference.

This attribute has two possible values:

drop

substitute the expression with an empty string after processing it

drop-line

drop the line that contains this expression (default setting; matches behavior of AsciiDoc.py)

The option skip doesn’t make sense here since the statement is not intended to produce content.

Consider the following declaration:

{set:name!}

Depending on whether attribute-undefined is drop or drop-line, either the statement or the line that

46 | Reference Attributes

contains it will be discarded. It’s reasonable to stick with the compliant behavior, drop-line, in this
case.


We recommend putting any statement that undefines an attribute on a line by
itself.

Attribute Assignment Precedence

Default attribute value precedence

The attribute assignment precedence, listed from highest to lowest, is:

1. An attribute defined using the API or CLI

2. An attribute defined in the document

3. The default value of the attribute, if applicable

Let’s use the imagesdir attribute to show how precedence works.

The default value for the imagesdir attribute is an empty string. Therefore, if the imagesdir attribute
is not assigned a value (either in the document, API, or CLI), the processor will assign it the default
value of empty string. If the imagesdir attribute is set in the document (meaning assigned a new
value, such as images), that value will override the default value. Finally, if a value is assigned to the
imagesdir attribute via the API or CLI, that value will override both the default value and the value
assigned in the document.

It’s possible to alter this order of precedence using a modifier, covered in the next section.

Altering the assignment precedence

You can allow the document to reassign an attribute that is defined via the API or CLI by adding the
@ precedence modifier to the end of the attribute value or the end of the attribute name. Adding this
modifier lowers the precedence so that an assignment in the document still wins out. We some­
times refer to this as “soft setting” the attribute. This feature can be useful for assigning default val­
ues for attribute, but still letting the document control its own fate.

 The @ modifier is removed before the assignment is made.

Here’s an example that shows how to set the imagesdir from the CLI with a lower precedence:

$ asciidoctor -a imagesdir=images@ doc.adoc

Alternately, you can place the modifier at the end of the attribute name:

$ asciidoctor -a imagesdir@=images doc.adoc

Attribute Assignment Precedence | 47

It’s now possible to override the value of the imagesdir attribute from within the document:

= Document Title
:imagesdir: new/path/to/images

To soft unset an attribute from the CLI or API, you can use the following syntax:

!name=@

The leading ! unsets the attribute while the @ lowers the precedence of the assignment. This assign­
ment is almost always used to unset a default value while still allowing the document to assign a
new one. One such example is sectids, which is enabled by default. !sectids=@ switches the setting
off.

Let’s update the attribute assignment precedence list defined earlier to reflect this additional rule:

1. An attribute passed to the API or CLI whose value does not end in @

2. An attribute defined in the document

3. An attribute passed to the API or CLI whose value or name ends in @

4. The default value of the attribute, if applicable

Regardless of whether the precedence modifier is applied, an attribute assignment always over­
rides the default value.

Counters
Counters are used to store and display ad-hoc sequences of numbers or Latin characters.



Counters are a poorly defined feature in AsciiDoc and should be avoided if possi­
ble. If you do use counters, you should only used them for the most rudimentary
use cases, such as making a sequence in a list, table column, or prose. You should
not use counters to build IDs (i.e., references) or reference text. Using counters
across the boundaries of a reference will very likely result in unexpected behavior.

A counter is implemented as a specialized document attribute. You declare and display a counter
using an attribute reference, where the attribute name is prefixed with counter: (e.g.,
{counter:name}). Since counters are attributes, counter names follow the same rules as attribute
names. The most important rule to note is that letters in counter names must be lowercase.

The counter value is incremented and displayed every time the counter: attribute reference is
resolved. The term increment means to advance the attribute value to the next value in the
sequence. If the counter value is an integer, add 1. If the counter value is a character, move to the
next letter in the Latin alphabet (e.g., a → b). The default start value of a counter is 1.

To create a sequence starting at 1, use the simple form {counter:name} as shown here:

48 | Counters

The salad calls for {counter:seq1}) apples, {counter:seq1}) oranges and
{counter:seq1}) pears.

Here’s the resulting output:

The salad calls for 1) apples, 2) oranges and 3) pears.

If you want to use a counter value in a section title, you should define it first using an attribute ref­
erence.

:seq1: {counter:seq1}
== Section {seq1}

The sequence in this section is {seq1}.

:seq1: {counter:seq1}
== Section {seq1}

The sequence in this section is {seq1}.

Here’s the resulting output:

Section 1
The sequence in this section is 1.

Section 2
The sequence in this section is 2.

To increment the counter without displaying it (i.e., to skip an item in the sequence), use the coun­
ter2 prefix instead:

{counter2:seq1}


A counter2 attribute reference on a line by itself will produce an empty paragraph.
You’ll need to adjoin it to the nearest content to avoid this side effect.

To display the current value of the counter without incrementing it, reference the counter name as
you would any other attribute:

Counters | 49

{counter2:pnum}This is paragraph {pnum}.

To create a character sequence, or start a number sequence with a value other than 1, specify a
start value by appending it to the first use of the counter:

Dessert calls for {counter:seq1:A}) mangoes, {counter:seq1}) grapes and
{counter:seq1}) cherries.


Character sequences either run from a,b,c,…x,y,z,{,|… or A,B,C,…,X,Y,Z,[,… depend­
ing on the start value. Therefore, they aren’t really useful for more than 26 items.

The start value of a counter is only recognized if the counter is unset at that point in the document.
Otherwise, the start value is ignored.

To reset a counter attribute, unset the corresponding attribute using an attribute entry. The
attribute entry must be adjacent to a block or else it is ignored.

The salad calls for {counter:seq1:1}) apples, {counter:seq1}) oranges and
{counter:seq1}) pears.

:!seq1:
Dessert calls for {counter:seq1:A}) mangoes, {counter:seq1}) grapes and
{counter:seq1}) cherries.

This gives:

The salad calls for 1) apples, 2) oranges and 3) pears.

Dessert calls for A) mangoes, B) grapes and C) cherries.

Here’s a full example that shows how to use a counter for part numbers in a table.

.Parts{counter2:index:0}
|===
|Part Id |Description

|PX-{counter:index}
|Description of PX-{index}

|PX-{counter:index}
|Description of PX-{index}
|===

Here’s the output of that table:

50 | Counters

Parts

Part Id Description

PX-1 Description of PX-1

PX-2 Description of PX-2

Counters | 51

Element Attributes
Element attributes are a powerful means of controlling the built-in settings of individual block and
inline elements in the AsciiDoc syntax. They can also be used to add supplemental information,
such as citation metadata and fallback content, to certain elements.

What are element attributes?
Element attributes define the built-in and user-defined settings and metadata that can be applied
to an individual block element or inline element in a document (including macros). Although the
include directive is not technically an element, element attributes can also be defined on an include
directive.

Element attributes may be positional (value only) or named (key/value pair). Some built-in and
extension elements will map a positional attribute to a named attribute. Each element recognizes a
predefined set of positional and/or named element attributes. Authors may define any number of
custom element attributes for passing information to an extension or document analyzer.

Like document attributes, there’s no strict schema for element attributes, or for the value of the
options element attribute. There’s a core set of reserved attributes shared by all block elements and
most inline elements, which includes id, role, opts, and title. Certain elements may reserve addi­
tional attributes and option values. For example, the source block reserves the lang attribute to set
the source language and the linenums option to enable line numbers. The link macro reserves the
window attribute to change the target window of a link and the nofollow option to prevent crawlers
from following it. Otherwise, the schema for element attributes is open-ended, thus allowing exten­
sions to use them for their own purpose.

Element attributes are commonly used for the following purposes:

• Declare the ID of an element

• Turn on or turn off an individual element’s built-in features

• Configure the built-in features of an individual element

• Apply user-defined information, such as citation metadata, fallback text, link text, and target
content, to an individual element

• Apply user-defined roles and behaviors to an individual element

Unlike document attributes, element attributes are defined directly on the element to which they
apply using an attribute list.

Attribute lists
Attributes can be assigned to block and inline elements using an attribute list (often abbreviated
as attrlist).

52 | What are element attributes?

Example 20. Anatomy of an attribute list

first-positional,second-positional,named="value of named"

Entries in an attribute list are separated by commas, excluding commas inside quotes. The syntax
used for an attribute list entry determines whether it’s a positional or named attribute. The space
after the comma separating entries is optional. To learn more about how the attribute list is parsed,
see Positional and Named Attributes.

For block elements, the attribute list is placed inside one or more block attribute lines. A block
attribute line is any line of text above the start of a block (e.g., the opening delimiter or simple con­
tent) that begins with [and ends with]. This line can be interspersed with other block metadata
lines, such as the block title. The text enclosed in the [and] boundaries is assumed to be a valid
attribute list and the line is automatically consumed. If the text cannot be parsed, an error message
will be emitted to the log.

Example 21. A block attribute line

[style,second-positional,named="value of named"]


The opening line of a paragraph may inadvertently match the syntax of a block
attribute line. If this happens, append {empty} to the end of the line to disrupt the
syntax match.

For block and inline macros, the attribute list is placed between the square brackets of the macro.
The text in an attribute list of a block macro never needs to be escaped. For an inline macro, it may
be necessary to escape the text in the attribute list to avoid prematurely ending the macro or
unwanted substitutions.

Example 22. A block macro with an attribute list

name::target[first-positional,second-positional,named="value of named"]

For formatted text, the attribute list is placed in the square brackets in front of the text enclosure.
However, formatted text only supports a restricted form of the attribute list. Specifically, it does not
support named attributes, only the attribute shorthand syntax.

Example 23. Formatted text with an attribute list

[#idname.rolename]*text with id and role*

Attribute lists:

• apply to blocks, macros, and inline elements,

• can contain positional and named attributes, and

• take precedence over document attributes if the element supports the override.

Attribute lists | 53

As mentioned in the previous section, the schema for element attributes is open-ended. Any posi­
tional or named attributes that are not recognized will be stored on the element, but will not have
an impact on the behavior or output. Extensions may use this auxiliary information to influence
their behavior and/or customize the output.

Positional and Named Attributes
This page breaks down the difference between positional and named attributes on an element and
the rules for parsing an attribute list.

Positional attribute

Entries in an attribute list that only consist of a value are referred to as positional attributes. The
position is the 1-based index of the entry once all named attributes have been removed (so they
may be interspersed).

The positional attribute may be dually assigned to an implicit attribute name if the block or macro
defines a mapping for positional attributes. Here are some examples of those mappings:

• icon: 1 ⇒ size

• image: and image:: 1 ⇒ alt (text), 2 ⇒ width, 3 ⇒ height

• Delimited blocks: 1 ⇒ block style and attribute shorthand

• Other inline quoted text: 1 ⇒ attribute shorthand

• link: and xref: 1 ⇒ text

• Custom blocks and macros can also specify positional attributes

For example, the following two image macros are equivalent.

image::sunset.jpg[Sunset,300,400]

image::sunset.jpg[alt=Sunset,width=300,height=400]

The second macro is the same as the first, but written out in longhand form.

Block style and attribute shorthand

The first positional attribute on all blocks (including sections) is special. It’s used to define the block
style. It also supports a shorthand notation for defining the ID, role, and options attributes. This
shorthand notation can also be used on formatted text, even though formatted text doesn’t techni­
cally support attributes.

To be clear, the shorthand notation is allowed in two places:

• The first positional attribute in block attribute line (i.e., the location of the block style)

• The text inside the brackets of formatted text (which is otherwise treated as the role)

54 | Positional and Named Attributes

The attribute shorthand is inspired by the HAML and Slim template languages as a way of saving
the author some typing. Instead of having to use the longhand form of a name attribute, it’s possi­
ble to compress the assignment to a value prefixed by a special marker. The markers are mapped as
follows:

• # - ID

• . - role

• % - option

Each shorthand entry is placed directly adjacent to previous one, starting immediately after the
optional block style. The order of the entries does not matter, except for the style, which must come
first.

Here’s an example that shows how to set an ID on a section using this shorthand notation:

[#custom-id]
== Section with Custom ID

The shorthand entry must follow the block style, if present. Here’s an example that shows how to
set an ID on an appendix section using this shorthand notation:

[appendix#custom-id]
== Appendix with Custom ID

Here’s an example of a block that uses the shorthand notation to set the ID, a role, and an option for
a list. Specifically, this syntax sets the ID to rules, adds the role prominent, and sets the option incre­
mental.

[#rules.prominent%incremental]
* Work hard
* Play hard
* Be happy

A block can have multiple roles and options, so these shorthand entries may be repeated. Here’s an
example that shows how to set several options on a table. Specifically, this syntax sets the header,
footer, and autowidth options.

[%header%footer%autowidth]
|===
|Header A |Header B
|Footer A |Footer B
|===

This shorthand notation also appears on formatted text. Here’s an example that shows how to set
the ID and add a role to a strong phrase. Specifically, this syntax sets the ID to free-world and adds

Positional and Named Attributes | 55

the goals role.

[#free-world.goals]*free the world*

Formatted text does not support a style, so the first and only positional attribute is always the short­
hand notation.

Named attribute

A named attribute consists of a name and a value separated by an = character (e.g., name=value).

If the value contains a space, comma, or quote character, it must be enclosed in double or single
quotes (e.g., name="value with space"). In all other cases, the surrounding quotes are optional.

If the value contains the same quote character used to enclose the value, the quote character in the
value must be escaped by prefixing it with a backslash (e.g., value="the song \"Dark Horse\"").

If enclosing quotes are used, they are dropped from the parsed value and the preceding backslash
is dropped from any escaped quotes.

Unset a named attribute

To undefine a named attribute, set the value to None (case sensitive).

Attribute list parsing

The source text that’s used to define attributes for an element is referred to as an attrlist. An
attrlist is always enclosed in a pair of square brackets. This applies for block attributes as well as
attributes on a block or inline macro. The processor splits the attrlist into individual attribute
entries, determines whether each entry is a positional or named attribute, parses the entry accord­
ingly, and assigns the result as an attribute on the node.

The rules for what defines the boundaries of an individual attribute, and whether the attribute is
positional or named, are defined below. In these rules, name consists of a word character (letter or
numeral) followed by any number of word or - characters (e.g., see-also).

• Attribute references are expanded before the attrlist is parsed (i.e., the attributes substitution is
applied).

• Parsing an attribute proceeds from the beginning of the attribute list string or after a previously
identified delimiter (,).

◦ The first character of an attribute list cannot be a tab or space. For subsequent attributes,
any leading space or tab characters are skipped.

• If a valid attribute name is found, and it is followed by an equals sign (=), then the parser recog­
nizes this as a named attribute. The text after the equals sign (=) and up to the next comma or
end of list is taken as the attribute value. Space and tab characters around the equals sign (=)
and at the end of the value are ignored.

• Otherwise, this is a positional attribute with a value that ends at the next delimiter or end of list.

56 | Positional and Named Attributes

Any space or tab characters at the boundaries of the value are ignored.

• To parse the attribute value:

◦ If the first character is not a quote, the string is read until the next delimiter or end of string.

◦ If the first character is a double quote (i.e., "), then the string is read until the next
unescaped double quote or, if there is no closing double quote, the next delimiter. If there is
a closing double quote, the enclosing double quote characters are removed and escaped
double quote characters are unescaped; if not, the initial double quote is retained.

◦ If the next character is a single quote (i.e., '), then the string is read until the next unescaped
single quote or, if there is no closing single quote, the next delimiter. If there is a closing sin­
gle quote, the enclosing single quote characters are removed and escaped single quote char­
acters are unescaped; if not, the initial single quote is retained. If there is a closing single
quote, and the first character is not an escaped single quote, substitutions are performed on
the value as described in Substitutions.

When to escape a closing square bracket

Since the terminal of an attrlist is a closing square bracket, it’s sometimes necessary to escape
a closing square bracket if it appears in the value of an attribute.

In line-oriented syntax such as a block attribute list, a block macro, and an include directive,
you do not have to escape closing square brackets that appear in the attrlist itself. That’s
because the parser already knows to look for the closing square bracket at the end of the line.

If a closing square bracket appears in the attrlist of an inline element, such as an inline
macro, it usually has to be escaped using a backslash or by using the character reference
]. There are some exceptions to this rule, such as a link macro in a footnote, which are
influenced by the substitution order.

Substitutions

Recall that attribute references are expanded before the attrlist is parsed. Therefore, it’s not neces­
sary to force substitutions to be applied to a value if you’re only interested in applying the attrib­
utes substitution. The attributes substitution has already been applied at this point.

If the attribute name (in the case of a positional attribute) or value (in the case of a named
attribute) is enclosed in single quotes (e.g., citetitle='Processed by https://asciidoctor.org'), and
the attribute is defined in an attrlist on a block, then the normal substitution group is applied to the
value at assignment time. No special processing is performed, aside from the expansion of attribute
references, if the value is not enclosed in quotes or is enclosed in double quotes.

If the value contains the same quote character used to enclose the value, escape the quote character
in the value by prefixing it with a backslash (e.g., citetitle='A \'use case\' diagram, generated by
https://plantuml.com').

Positional and Named Attributes | 57

ID Attribute
You can assign an identifier (i.e., unique name) to a block or inline element using the id attribute.
The id attribute is a named attribute. Its purpose is to identify the element when linking, scripting,
or styling. Thus, the identifier can only be used once in a document.

An ID:

1. provides an internal link or cross reference anchor for an element

2. can be used for adding additional styling to specific elements (e.g., via a CSS ID selector)

You can assign an ID to blocks using the shorthand hash (#) syntax, longhand (id=) syntax, or the
anchor ([[]]) syntax. You can assign an ID to inline elements using the shorthand hash (#) syntax or
by adding an anchor adjacent to the inline element using the anchor ([[]]) syntax. You can assign
an ID to a table cell by using an anchor ([[]]) at the start of the cell. Likewise, you can assign an ID
to a list item by using an anchor ([[]]) at the start of the principal text.

Valid ID characters

AsciiDoc does not restrict the set of characters that can be used for an ID when the ID is defined
using the named id attribute. All the language requires in this case is that the value be non-empty.
When the ID is defined using the shorthand hash syntax or the anchor syntax, the acceptable char­
acters is more limited (for example, spaces are not permitted). Regardless, it’s not advisable to
exploit the ability to use any characters the AsciiDoc syntax allows. The reason to be cautious is
because the ID is passed through to the output, and not all output formats afford the same latitude.
For example, XML is far more restrictive about which characters are permitted in an ID value.

To ensure portability of your IDs, it’s best to conform to a universal standard. The standard we rec­
ommend following is a Name value as defined by the XML specification. At a high level, the first
character of a Name must be a letter, colon, or underscore and the optional following characters
must be a letter, colon, underscore, hyphen, period, or digit. You should not use any space charac­
ters in an ID. Starting the ID with a digit is less likely to be problematic, but still best to avoid. It’s
best to use lowercase letters whenever possible as this solves portability problem when using case-
insensitive platforms.

When the AsciiDoc processor auto-generates IDs for section titles and discrete headings, it adheres
to this standard.

Here are examples of valid IDs (according to the recommendations above):

install
data-structures
error-handling
subject-and-body
unset_an_attribute

Here are examples of invalid IDs:

58 | ID Attribute

https://www.w3.org/TR/REC-xml/#NT-Name

install the gem
3 blind mice
-about-the-author

Block assignment

You can assign an ID to a block using the shorthand syntax, the longhand syntax, or a block anchor.

In the shorthand syntax, you prefix the name with a hash (#) in the first position attribute.

[#goals]
* Goal 1
* Goal 2

In the longhand syntax, you use a standard named attribute.

[id=goals]
* Goal 1
* Goal 2

In the block anchor syntax, you surround the name with double square brackets:

[[goals]]
* Goal 1
* Goal 2

Let’s say you want to create a blockquote from an open block and assign it an ID and role. You add
quote (the block style) in front of the # (the ID) in the first attribute position, as this example shows:

[quote.movie#roads,Dr. Emmett Brown]

Roads? Where we're going, we don't need roads.

 The order of ID and role values in the shorthand syntax does not matter.



If the ID contains a ., you must define it using either a longhand assignment (e.g.,
id=classname.propertyname) or the anchor shorthand (e.g., [[attributes:id:::class­
name.propertyname]]). This is necessary since the . character in the shorthand syn­
tax is the delimiter for a role, and thus gets misinterpreted as such.

ID Attribute | 59

Inline assignment

The id (#) shorthand can be used on inline quoted text.

Example 24. Quoted text with ID assignment using shorthand syntax

[#free_the_world]#free the world#

Example 25. General text with preceding ID assignment using inline anchor syntax

[[free_the_world]]free the world

Use an ID as an anchor

An anchor (aka ID) can be defined almost anywhere in the document, including on a section title,
on a discrete heading, on a paragraph, on an image, on a delimited block, on an inline phrase, and
so forth. The anchor is declared by enclosing a valid XML Name in double square brackets (e.g.,
[[attributes:id:::idname]]) or using the shorthand ID syntax (e.g., [#idname]) at the start of an
attribute list. The shorthand form is the preferred syntax.

The double square bracket form requires the ID to start with a letter, an underscore, or a colon,
ensuring the ID is portable. According to the XML Name rules, a portable ID may not begin with a
number, even though a number is allowed elsewhere in the name. The shorthand form in an
attribute list does not impose this restriction.

On block element

To reference a block element, you must assign an ID to that block. You can define an ID using the
shorthand syntax:

Example 26. Assign an ID to a paragraph using shorthand syntax

[#notice]
This paragraph gets a lot of attention.

or you can define it using the block anchor syntax:

Example 27. Assign an ID to a paragraph using block anchor syntax

[[notice]]
This paragraph gets a lot of attention.

As an inline anchor

You can also define an anchor anywhere in content that receives normal substitutions (specifically
the macros substitution). You can enclose the ID in double square brackets:

60 | ID Attribute

https://www.w3.org/TR/REC-xml/#NT-Name

Example 28. Define an inline anchor

[[bookmark-a]]Inline anchors make arbitrary content referenceable.

or using the shorthand ID syntax.

Example 29. Define an inline anchor using shorthand syntax

[#bookmark-b]#Inline anchors can be applied to a phrase like this one.#

On a list item

In addition to being able to define anchors on sections and blocks, anchors can be defined inline
wherever you can type normal text (anchors are a macros substitution). The anchors in the text get
replaced with invisible anchor points in the output.

For example, you would not put an anchor in front of a list item:

Example 30. Invalid position for an anchor ID in front of a list item

[[anchor-point]]* list item with invalid anchor

Instead, you would put it at the start of the text of the list item:

Example 31. Define an inline anchor on a list item

* First item
* [[step2]]Second item
* Third item

For a description list, the anchor must be placed at the start of the term:

Example 32. Define an inline anchor on a description list item

[[cpu,CPU]]Central Processing Unit (CPU)::
The brain of the computer.

[[hard-drive]]Hard drive::
Permanent storage for operating system and/or user files.

You can add multiple anchors to a list item or description list term. However, only the first anchor
is registered for use as an xref within the document. The remaining anchors are auxiliary and are
used for making deep links (i.e., accessible from a URL fragment).

On a table cell

You can assign an ID to a table cell by placing an inline anchor at the start of the cell.

ID Attribute | 61

Example 33. Assigning an ID to a table cell using an inline anchor

|===
|[[my_cell]]The table cell I want to jump to.
|===

On an inline image

You cannot currently define an ID on an inline image. Instead you need to place an inline anchor
adjacent to it.

Example 34. Placing an inline anchor adjacent to an inline image using shorthand

[[tiger-image]]image:tiger.png[Image of a tiger]

Instead of the shorthand form, you can use the macro anchor to achieve the same goal.

Example 35. Placing an inline anchor adjacent to an inline image using a macro

anchor:tiger-image[]image:tiger.png[Image of a tiger]

Add additional anchors to a section

To add additional anchors to a section (with or without an autogenerated ID), place the anchors in
front of the title (without any spaces).

Example 36. Add additional anchors to a section using inline anchors

[#version-4_9]
=== [[current]][[latest]]Version 4.9


You cannot use inline anchors in a section title to make internal references to that
section. The processor will flag these as possible invalid references. These addi­
tional anchors are only intended for making deep links using an alternate ID.

Remember that inline anchors are discovered wherever the macros substitution is applied (e.g.,
paragraph text). If text content doesn’t belong somewhere, neither does an inline anchor point.

Customize automatic xreftext

It’s possible to customize the text that will be used in the cross reference link (called xreflabel). If
not defined, the AsciiDoc processor does it best to find suitable text (the solution differs from case
to case). In case of an image, the image caption will be used. In case of a section header, the text of
the section’s title will be used.

To define the xreflabel, add it in the anchor definition right after the ID (separated by a comma).

62 | ID Attribute

Example 37. An anchor ID with a defined xreflabel. The caption will not be used as link text.

[[tiger-image,Image of a tiger]]
.This image represents a Bengal tiger also called the Indian tiger
image::tiger.png[]

Role Attribute
You can assign one or more roles to blocks and most inline elements using the role attribute. The
role attribute is a named attribute. Even though the attribute name is singular, it may contain mul­
tiple (space-separated) roles. Roles may also be defined using a shorthand (dot-prefixed) syntax.

A role:

1. adds additional semantics to an element

2. can be used to apply additional styling to a group of elements (e.g., via a CSS class selector)

3. may activate additional behavior if recognized by the converter



The role attribute in AsciiDoc always get mapped to the class attribute in the
HTML output. In other words, role names are synonymous with HTML class
names, thus allowing output elements to be identified and styled in CSS using class
selectors (e.g., sidebarblock.role1).

Assign roles to blocks

You can assign roles to blocks using the shorthand dot (.) syntax or the longhand (role=) syntax.

Shorthand role syntax for blocks

To assign a role to a block, prefix the value with a dot (.) in style style position of an attribute list.
The dot implicitly sets the role attribute.

Example 38. Sidebar block with a role assigned using the shorthand dot

[.rolename]

This is a sidebar with a role assigned to it, rolename.

You can assign multiple roles to a block by prefixing each value with a dot (.).

Example 39. Sidebar with two roles assigned using the shorthand dot

[.role1.role2]

This is a sidebar with two roles assigned to it, role1 and role2.

Role Attribute | 63

The role values are turned into a space-separated list of values, role1 role2.

Formal role syntax for blocks

You can define the roles using a named attribute instead, which is the longhand syntax for adding
roles to an element. When using this syntax, add the attribute name role followed by the equals
sign (=) then the role name or names to any position in the block attribute list.

Example 40. Sidebar block with a role assigned using the formal syntax

[role=rolename]

This is a sidebar with one role assigned to it, rolename.

Separate multiple role values using spaces. Since the value has spaces, it’s easier to read if enclosed
in quotes, though the quotes are not strictly required.

Example 41. Sidebar with two roles assigned using the formal syntax

[role="role1 role2"]

This is a sidebar with two roles assigned to it, role1 and role2.

In this form, the value of the role attribute is already in the right form to be passed through to the
output. No additional processing is done on it.

This longhand syntax can also be used on inline macros, but it cannot be used with formatted (aka
quoted) text.

Assign roles to formatted inline elements

You can assign roles to inline elements that are enclosed in formatting syntax, such as bold (*), italic
(_), and monospace (`). To assign a role to an inline element that’s enclosed in formatting syntax
block, prefix the value with a dot (.) in an attribute list.

Example 42. Inline role assignments using shorthand syntax

This sentence contains [.application]*bold inline content* that's assigned a role.

This sentence contains [.varname]`monospace text` that's assigned a role.

The HTML source code that is output from Example 42 is shown below.

Example 43. HTML source code produced by Example 42

<p>This sentence contains <strong class="application">bold inline content
that’s assigned a role.</p>

64 | Role Attribute

<p>This sentence contains <code class="varname">monospace text</code> that’s
assigned a role.</p>
</div>

As you can see from this output, roles in AsciiDoc are translated to CSS class names in HTML. Thus,
roles are an ideal way to annotated elements in your document so you can use CSS to uniquely style
them.

The role is often used on a phrase to represent semantics you might have expressed using a dedi­
cated element in DocBook or DITA.

Options Attribute
The options attribute (often abbreviated as opts) is a versatile named attribute that can be assigned
one or more values. It can be defined globally as document attribute as well as a block attribute on
an individual block.

There is no strict schema for options. Any options which are not recognized are ignored.

Assign options to blocks

You can assign one or more options to a block using the shorthand or formal syntax for the options
attribute.

Shorthand options syntax for blocks

To assign an option to a block, prefix the value with a percent sign (%) in an attribute list. The per­
cent sign implicitly sets the options attribute.

Example 44. Sidebar block with an option assigned using the shorthand dot

[%option]

This is a sidebar with an option assigned to it, named option.

You can assign multiple options to a block by prefixing each value with a percent sign (%).

Example 45. Sidebar with two options assigned using the shorthand dot

[%option1%option2]

This is a sidebar with two options assigned to it, named option1 and option2.

For instance, consider a table with the three built-in option values, header, footer, and autowidth,
assigned to it. Example 46 shows how the values are assigned using the shorthand notation.

Options Attribute | 65

Example 46. Table with three options assigned using the shorthand syntax

[%header%footer%autowidth,cols=2*~]
|===
|Cell A1 |Cell B1

|Cell A2 |Cell B2

|Cell A3 |Cell B3
|===

Formal options syntax for blocks

Explicitly set options or opts, followed by the equals sign (=), and then the value in an attribute list.

Example 47. Sidebar block with an option assigned using the formal syntax

[opts=option]

This is a sidebar with an option assigned to it, named option.

Separate multiple option values with commas (,).

Example 48. Sidebar with three options assigned using the formal syntax

[opts="option1,option2"]

This is a sidebar with two options assigned to it, option1 and option2.

Let’s revisit the table in Example 46 that has the three built-in option values, header, footer, and
autowidth, assigned to it using the shorthand notation (%). Instead of using the shorthand notation,
Example 49 shows how the values are assigned using the formal syntax.

Example 49. Table with three options assigned using the formal syntax

[cols=2*~,opts="header,footer,autowidth"]
|===
|Cell A1 |Cell B1

|Cell A2 |Cell B2

|Cell A3 |Cell B3
|===

66 | Options Attribute

Using options with other attributes

Let’s consider options when combined with other attributes. The following example shows how to
structure an attribute list when you have style, role, and options attributes.

Example 50. Shorthand

[horizontal.properties%step] ① ② ③
property 1:: does stuff
property 2:: does different stuff

① The block style attribute, declared as horizontal in this example, is a positional attribute. A block
style value is always placed at the start of the attribute list.

② properties is prefixed with a dot (.), signifying that it’s assigned to the role attribute. The role
and options attributes can be set in either order, i.e., [horizontal%step.properties].

③ The percent sign (%) sets the options attribute and assigns the step value to it.

When you use the formal syntax, the positional and named attributes are separated by commas (,).

Example 51. Formal

[horizontal,role=properties,opts=step] ①
property 1:: does stuff
property 2:: does different stuff

① Like in the shorthand example, named attributes such as role and options can be set in any
order in the attribute list once any positional attributes are set.

Options Attribute | 67

https://docs.asciidoctor.org/asciidoc/latest/blocks/styles/

Document Header
An AsciiDoc document may begin with a document header. The document header encapsulates the
document title, author and revision information, document-wide attributes, and other document
metadata.

Document header structure
The optional document header is a series of contiguous lines at the start of the AsciiDoc source,
after skipping any empty or comment lines. If a document has a header, no content blocks are per­
mitted above it. In other words, the document must start with a document header if it has one.



The document header may not contain empty lines. The first
empty line the processor encounters after the document header
begins marks the end of the document header and the start of the
document body.

A header typically begins with a Document Title. When a document title is specified, it may be
immediately followed by one or two designated lines of content. These implicit content lines are
used to assign Author Information and Revision Information to the document.

The header may contain the following elements as long as there aren’t any empty lines between
them:

• optional document title (a level-0 heading)

• optional author line or author and revision lines if the document title is present (should imme­
diately follow the document title)

• optional document-wide attributes (built-in and user-defined) declared using attribute entries,

◦ includes optional metadata, such as a description or keywords

• optional comment lines

Notice in Example 52 that there are no empty lines between any of the entries. In other words, the
lines are contiguous.

Example 52. Common elements in a header

// this comment line is ignored
= Document Title ①
Kismet R. Lee <kismet@asciidoctor.org> ②
:description: The document's description. ③
:sectanchors: ④
:url-repo: https://my-git-repo.com ⑤
⑥
The document body starts here.

68 | Document header structure

① Document title

② Author line

③ Attribute entry assigning metadata to a built-in document attribute

④ Attribute entry setting a built-in document attribute

⑤ Attribute entry assigning a value to a user-defined document attribute

⑥ The document body is separated from the document header by an empty line

There are a few attribute entries in Example 52. Each attribute entry, whether built-in or user-
defined, must be entered on its own line. While attribute entries may be placed anywhere in the
header, including above the document title, the preferred placement is below the title, if it’s
present. Since the document title is optional, it’s possible for the header to only consist of attribute
entries.

When does the document header end?
The first empty line in the document marks the end of the header. The next line after the first
empty line that contains content is interpreted as the beginning of the document’s body.

Example 53. Terminating a document header

= Document Title
Kismet R. Lee <kismet@asciidoctor.org>
:url-repo: https://my-git-repo.com
①
This is the first line of content in the document body. ②

① An empty line ends the document header.

② After the empty line, the next line with content starts the body of the document.

The first line of the document body can be any valid AsciiDoc content, such as a section heading,
paragraph, table, include directive, image, etc. Any attributes defined below the first empty line are
not part of the document header and will not be scoped to the entire document.

Header requirements per doctype
The header is optional when the doctype is article or book. A header is required when the docu­
ment type is manpage. See the manpage doctype section for manual page (man page) requirements.

If you put content blocks above the document header when using the default article doctype, you
will see the following warning:

level 0 sections can only be used when doctype is book

While this warning can be mitigated by changing the doctype to book, it may lead to a secondary
warning about an invalid part. That’s because the document title will be repurposed as a part title

When does the document header end? | 69

https://docs.asciidoctor.org/asciidoctor/latest/manpage-backend/

and any lines that follow it as content blocks. If you’re going to use the book doctype, you must
structure your document to use Book Parts.

Header processing
The information in the document header is displayed by default when converting to a standalone
document. If you don’t want the header of a document to be displayed, set the noheader attribute in
the document’s header or via the CLI.

Front matter
Many static site generators, such as Jekyll and Middleman, rely on front matter added to the top of
the document to determine how to convert the content. Asciidoctor has a number of attributes
available to correctly handle front matter. See Skip Front Matter to learn more.

Document Title
A document title (aka doctitle) is defined in the document header, typically on the first line of the
document. Like all elements of the document header, the document title is optional.

Title syntax

A document title is specified using a single equals sign (=), followed by a space, then the title text.

Example 54. Document with a title

= The Intrepid Chronicles

This adventure begins on a frigid morning.

In Example 54, notice the empty line between the document title and the first line of prose. That
empty line is what separates the document header from the document body.

Doctypes and titles

Technically, a document title is a level 0 section title (=). The article and manpage document types
(doctype) can only have one level 0 section.

The book document type permits multiple level 0 section titles. When the doctype is book, the title of
the level 0 section in the header is used as the document’s title. Subsequent level 0 section titles in
the document body are interpreted as part titles, unless labeled with a style.

70 | Header processing

https://docs.asciidoctor.org/asciidoctor/latest/html-backend/skip-front-matter/

Hide or show the document title

When converting a standalone document, the document title is shown by default. You can control
whether the document title appears with the showtitle attribute. If you don’t want the title to be
shown, unset the showtitle attribute using showtitle! in the document header or via the CLI or API.

When converted to an embeddable document, the document title isn’t shown by default. To show
the title in the embeddable document, set showtitle in the document header or via the CLI or API.
The author and revision information isn’t shown below the document title in the embeddable ver­
sion of the document like it is in the standalone document, even when showtitle is set.

Reference the document title

The level 0 section title in a document’s header, that is, its title, is automatically assigned to the doc­
ument attribute doctitle. You can reference the doctitle attribute anywhere in your document and
the document’s title will be displayed.

Example 55. Reference the doctitle attribute

= The Intrepid Chronicles

{doctitle} begin on a frigid morning.

The doctitle attribute can also be explicitly set and assigned a value using an attribute entry in the
header.

title attribute

By default, the text of the document title is used as the value of the HTML <title> element and main
DocBook <info> element. You can override this behavior by setting the title attribute in the header
with an attribute entry. If neither a level 0 section title or doctitle is specified in the header, but
title is, its value is used as a fallback document title.

Subtitle

An optional subtitle can be appended to a document title.



The HTML 5 converter does not currently split the subtitle out from the document
title when generating HTML from AsciiDoc. The document title is only partitioned
into a main and subtitle in the output of the DocBook, EPUB 3, and PDF converters.
However, the subtitle is still available via the API, so you could add support for it

Document Title | 71

by extending the HTML 5 converter.

Subtitle syntax

When the document title contains a colon followed by a space (i.e, :), the text after the final colon-
space sequence is treated as a subtitle.

Example 56. A document title and subtitle

= Main Title: Subtitle

The separator is searched for from the end of the text. Therefore, only the last occurrence of the
separator (i.e, :) is used for partitioning the title.

Example 57. A document title that contains more than one colon-space sequence

= Main Title: Main Title Continued: Subtitle

Modify the title separator

You can change the title separator by specifying the separator block attribute explicitly above the
document title. A space will automatically be appended to the separator value.

Example 58. Assign separator to the document title

[separator=::]
= Main Title:: Subtitle

You can also assign a separator using a document attribute title-separator in the header.

Example 59. Assign title-separator to the document title

= Main Title:: Subtitle
:title-separator: ::

title-separator can also be assigned via the CLI.

$ asciidoctor -a title-separator=:: document.adoc

Partition the title using the API

You can partition the title from the API when calling the doctitle method on Document:

Example 60. Retrieving a partitioned document title

title_parts = document.doctitle partition: true
puts title_parts.title

72 | Document Title

puts title_parts.subtitle

You can partition the title in an arbitrary way by passing the separator as a value to the partition
option. In this case, the partition option both activates subtitle partitioning and passes in a custom
separator.

Example 61. Retrieving a partitioned document title with a custom separator

title_parts = document.doctitle partition: '::'
puts title_parts.title
puts title_parts.subtitle

Author Information
Adding author information to your document is optional. A document’s author information is
assigned to multiple built-in attributes. These optional attributes can be set and assigned values
using the author line or using attribute entries in a document’s header.

Author and email attributes

author

The author attribute represents the author’s full name. The attributes firstname, middlename,
lastname, and authorinitials are automatically derived from the value of the author attribute.
When assigned implicitly via the author line, the value includes all of the characters and words
prior to the semicolon (;), angle bracket (<), or the end of the line. Note that when using the
implicit author line, the full name can have a maximum of three space-separated names. If it has
more, then the full name is assigned to the firstname attribute. You can adjoin names using an
underscore (_) character.

email

The email attribute represents an email address or URL associated with the first author (author).
When assigned via the author line, it’s enclosed in a pair of angle brackets (< >). A URL can be
used in place of the email address.

Name and initials attributes

firstname

The firstname attribute represents the first, forename, or given name of the author. The first
space-separated name in the value of the author attribute is automatically assigned to firstname.

lastname

The lastname attribute represents the last, surname, or family name of the author. If author con­
tains more than one space-separated name, the third name and any names after that are
assigned to the lastname attribute.

middlename

The lastname attribute represents the middle name or initial of the author. If author contains

Author Information | 73

more than two space-separated names, the second name is assigned to the middlename attribute.

authorinitials

The first character of the firstname, middlename, and lastname attribute values are assigned to the
authorinitials attribute. The value of the authorinitials attribute will consist of three charac­
ters or less depending on how many parts are in the author’s name.

Multiple author attributes

author_<n>

An author_<n> attribute represents each additional author’s full name, where <n> is the 1-based
index of all of the authors listed on the author line (e.g., author_2, author_3). The attributes first­
name_<n>, middlename_<n>, lastname_<n>, and authorinitials_<n> are automatically derived from
author_<n>. Additional authors can only be assigned via the author line. Each author’s full name
includes all of the characters and words directly after a semicolon (;) but prior to the angle
bracket (<), next semicolon (;), or the end of the line. The full name can have a maximum of
three space-separated names. If it has more, then the full name is assigned to the firstname_<n>
attribute. You can adjoin names using an underscore (_) character.

email_<n>

The email_<n> attribute represents an email address associated with each additional author
(author_<n>). It’s enclosed in a pair of angle brackets (< >) on the author line. A URL can be used
in place of the email address.

firstname_<n>

The first space-separated name in the value of the author_<n> attribute is automatically assigned
to firstname_<n>.

lastname_<n>

If author_<n> contains more than one space-separated name, the third name and any names after
that are assigned to the lastname_<n> attribute.

middlename_<n>

If author_<n> contains more than two space-separated names, the second name is assigned to the
middlename_<n> attribute.

authorinitials_<n>

The first character of the firstname_<n>, middlename_<n>, and lastname_<n> attribute values. The
value of the authorinitials_<n> attribute will consist of three characters or less depending on
how many parts are in the author’s name.

Using the Author Line

The author attributes can be implicitly set and assigned values using the author line.

What’s the author line?

The author line is directly after the document title line in the document header. When the content

74 | Author Information

on this line is structured correctly, the processor assigns the content to the built-in author and email
attributes.

When can I use the author line?

In order for the processor to properly detect the author line and assign the content to the correct
attributes, all of the following criteria must be met:

1. The header must contain a document title.

2. The author information must be entered on the line directly beneath the document title.

3. The author line must start with an author name.

4. The content in the author line must be placed in a specific order and separated with the correct
syntax.

Example 62. Author line structure for single author

= Document Title
firstname middlename lastname <email>

The author’s middle name is optional. An email following the author’s last name is also optional. If
included, the email address must be enclosed in a pair of angle brackets (< >).


The email can be replaced by a URL, though the value is still stored in the email
attribute.

The author line also accepts multiple authors.

Assign an author and email

In Example 63, let’s add an author and their email address using the author line. The author line
must be placed on the line directly below the document title and start with an author’s name.

Example 63. Add an author and email using the author line

= The Intrepid Chronicles
Kismet R. Lee <kismet@asciidoctor.org> ① ②

① Enter the author’s name on the line below the document title.

② In a pair of angle brackets (< >), enter the author’s email.

Remember, a middle name and email are optional. The processor assigns the content on the author
line to the built-in attributes using word position, word count, and syntax.


The email can be replaced by a URL, though the value is still stored in the email
attribute.

When the default stylesheet is applied, the author information is displayed on the byline. The
byline displays the author information and the revision information directly beneath the docu­

Author Information | 75

ment’s title.

Using attribute references in the author line

The author line is not intended to support the arbitrary placement of attribute references.
While attribute references are replaced in the author line (as part of the header substitution
group), they aren’t substituted until after the line is parsed. This ordering can sometimes pro­
duce undesirable results. It’s best to use the author line strictly as a shorthand for defining
static author and email information.

If you do need to use attribute references in the author or email values, you should define the
attributes explicitly using attribute entries.

Add Multiple Authors to a Document

The author line is the only way to assign more than one author to a document for display in the
byline. Additionally, only the HTML 5 and Docbook converters can convert documents with multi­
ple authors.

Multi-author syntax

The information for each author is concluded with a semicolon (;).

Example 64. Author line structure for multiple authors

= Document Title
firstname middlename lastname <email>; firstname middlename lastname <email>

Directly after each author’s last name or optional email, enter a semicolon (;) followed by a space,
and then enter the next author’s information.

Escape a trailing character reference

If an author name segment ends with a character reference (e.g., ®), you must escape it from
processing. One way to escape it is to add a trailing attribute reference (e.g., {empty}). If the charac­
ter reference appears at the end of the last author name segment, you can use a second semicolon
instead.

A better way of escaping the character reference is to replace it with an attribute reference (e.g.,
{reg}).

76 | Author Information

Even if the character reference is escaped, the segments of the author name will not be processed.
Instead, the whole name will be assigned to the author and firstname attributes. This limitation may
be lifted in the future.

List multiple authors on the author line

The author line in Example 65 lists the information for three authors. Each author’s information is
separated by a semicolon (;). Notice that the author B. Steppenwolf doesn’t have an email, so the
semicolon is placed at the end of their name.

Example 65. An author line with three authors and two email addresses

= The Intrepid Chronicles
Kismet R. Lee <kismet@asciidoctor.org>; B. Steppenwolf; Pax Draeke
<pax@asciidoctor.org>

The result of Example 65 is displayed below.

The information for each author can also be referenced in the document using their respective
built-in attribute.

If an author name ends with with a character reference, you can preserve the semicolon in the
character reference by adding a trailing attribute reference:

AsciiDoc®{empty} WG; Another Author

Another solution entails moving the character reference to an attribute and inserting it using an
attribute reference:

:reg: ®
AsciiDoc{reg} WG; Another Author

Even though the character reference is escaped, the segments of the author name will not be
processed.

Assign Author and Email with Attribute Entries

Instead of using an author line, a single author’s information can be set and assigned with attribute
entries in the document header.

Author Information | 77

author and email attribute syntax

The built-in attributes author and email can be explicitly set and assigned values in the document
header using attribute entries.

Example 66. Set author and email attributes

= The Intrepid Chronicles
:author: Kismet R. Lee ①
:email: kismet@asciidoctor.org ②

① The author’s name is assigned to the built-in attribute author

② The author’s email is assigned to the built-in attribute email

When the default stylesheet is applied, the author information assigned to these attributes is dis­
played on the byline. The result of Example 66 is displayed below.


You can’t set the built-in attributes for multiple authors (e.g., author_2, email_3)
using attribute entries. Multiple authors can only be set using the author line.

These attributes can also be referenced in the document.

Reference the Author Information

Referencing the author attributes

You can reference the built-in author attributes in your document regardless of whether they’re set
via the author line or attribute entries. In Example 67, the author and email attributes are assigned
using attribute entries.

Example 67. Reference the author attributes

= The Intrepid Chronicles
:author: Kismet R. Lee
:email: kismet@asciidoctor.org

== About {author}

You can contact {firstname} at {email}.

P.S. Don't ask what the {middlename} stands for; it's a secret.
{authorinitials}

78 | Author Information

The result of Example 67 is displayed below.

Referencing information for multiple authors

The first author in an author line is assigned to the built-in attributes author, email, firstname, etc.
Subsequent authors are assigned to the built-in author attributes, but the attribute names are
appended with an underscore (_) and the numeric position of the author in the author line. For
instance, the author B. Steppenwolf in Example 68 is the second author in the author line. The built-
in attributes used to reference their information are appended with the number 2, e.g., author_2,
email_2, lastname_2, etc.

Example 68. Reference the built-in attributes for multiple authors

= The Intrepid Chronicles
Kismet R. Lee <kismet@asciidoctor.org>; B. Steppenwolf; Pax Draeke
<pax@asciidoctor.org>

.About {author_2}
Mr. {lastname_2} lives in the Rocky Mountains.

.About {author_3}
{firstname_3}, also known as {authorinitials_3}, loves to surf.

.About {author}
You can contact {firstname} at {email}.

The result of Example 68 is displayed below.

Author Information | 79

Compound Author Names

When a name consists of multiple parts, such as a compound or composite surname, or a double
middle name, the processor needs to be explicitly told which words should be assigned to a specific
attribute.

Connecting compound author names

If the parts of an author’s name aren’t assigned to the correct built-in attributes, they may output
the wrong information if they’re referenced in the body of the document. For instance, if the name
Ann Marie Jenson was entered on the author line or assigned to the attribute author, the processor
would assign Ann to firstname, Marie to middlename, and Jenson to lastname based on the location
and order of each word. This assignment would be incorrect because the author’s first name is Ann
Marie.

When part of an author’s name consists of more than one word, use an underscore (_) between the
words to connect them.

Example 69. Compound name syntax

= Document Title
firstname_firstname lastname; firstname middlename_middlename lastname

If the more than three space-separated names (or initials) are entered in the implicit author line,
the entire line (including the email portion) will be used as the author’s full name and first name.
Thus, it’s important to use the underscore separator to ensure there are no more than three space-
separated names.

Compound names in the author line

In Example 70, the first author has a compound first name and the second author has a compound
surname.

80 | Author Information

Example 70. Assign compound names in the author line

= Drum and Bass Breakbeats
Ann_Marie Jenson; Tomás López_del_Toro ① ②

① To signal to the processor that Ann Marie is the author’s first name (instead of their first and
middle names), type an underscore (_) between each part of the author’s first name.

② The second author’s last name consists of three words. Type an underscore (_) between each
word of the author’s last name.

The result of Example 70 is displayed below. Notice that the underscores (_) aren’t displayed when
the document is rendered.

The underscore between each word in a compound name ensures that the parts of an author’s
name are assigned correctly to the corresponding built-in attributes. If you were to reference the
first author’s first name or the second author’s last name in the document body, as shown in Exam­
ple 71, the correct values would be displayed.

Example 71. Reference authors with compound names

= Drum and Bass Breakbeats
Ann_Marie Jenson; Tomás López_del_Toro

The first author's first name is {firstname}.

The second author's last name is {lastname_2}.

Like in the byline, the underscores (_) aren’t displayed when the document is rendered.

Author Information | 81

Compound names in the author attribute

An underscore (_) should also be placed between each part of a compound name when the author
is assigned using the author attribute.

Example 72. Assign a compound name using the author attribute

= Quantum Networks
:author: Mara_Moss Wirribi ①

== About {author}

{firstname} lives on the Bellarine Peninsula near Geelong, Australia. ②

① Assign the author’s name to the author attribute. Enter an underscore (_) between each part of
the author’s first name. This ensures that their full first name is correct when it’s automatically
assigned to firstname by the processor.

② The built-in attribute firstname is referenced in the document’s body. The author’s first name is
automatically extracted from the value of author and assigned to firstname.

The result of Example 72, displayed below, shows that the processor assigned the correct words to
the built-in attribute firstname since the author’s full first name, Mara Moss, is displayed where
firstname was referenced.

Revision Information
A document’s revision information is assigned to three built-in attributes: revnumber, revdate and
revremark. These optional attributes can be set and assigned values using the revision line or using
attribute entries in a document header.

Revision attributes

revnumber

The document’s revision number or version is assigned to the built-in revnumber attribute. When
assigned using the revision line, the version must contain at least one number, and, if it isn’t fol­
lowed by a date or remark, it must begin with the letter v (e.g., v7.0.6). Any letters or symbols
preceding the number, including v, are dropped when the document is rendered. If revnumber is
set with an attribute entry, it doesn’t have to contain a number and the entire value is displayed

82 | Revision Information

in the rendered document.

revdate

The date the revision was completed is assigned to the built-in revdate attribute. If the date is
assigned using the revision line, it must be separated from the version by a comma (e.g., 78.1,
2020-10-10). The date can contain letters, numbers, symbols, and attribute references.

revremark

Remarks about the revision of the document are assigned to the built-in revremark attribute. The
remark must be separated by a colon (:) from the version or revision date when assigned using
the revision line.

Using the Revision Line

The revision attributes can be set and assigned values using the revision line.

What’s the revision line?

The revision line is the line directly after the author line in the document header. When the con­
tent on this line is structured correctly, the processor assigns the content to the built-in revnumber,
revdate and revremark attributes.

When can I use the revision line?

In order for the processor to properly detect the revision line and assign the content to the correct
attributes, all of the following criteria must be met:

1. The document header must contain a document title and an author line.

2. The revision information must be entered on the line directly beneath the author line.

3. The revision line must start with the revision number.

4. The revision number must contain at least one number, but a number doesn’t have to be the
first character in the version.

5. The values in the revision line must be placed in a specific order and separated with the correct
syntax.

Example 73. Revision line structure

= Document Title
author <email>
revision number, revision date: revision remark

When using the revision line, the revision date and remark are optional.

• v7.5 When the revision line only contains a revision number, prefix the number with a v.

• 7.5, 1-29-2020 When the revision line contains a version and a date, separate the version num­
ber from the date with a comma (,). A v prefix before the version number is optional.

• 7.5: A new analysis When the revision line contains a version and a remark, separate the ver­

Revision Information | 83

sion number from the remark with a colon (:). A v prefix before the version number is optional.

• 7.5, 1-29-2020: A new analysis When the revision line contains a version, date, and a remark,
separate the version number from the date with a comma (,) and separate the date from the
remark with a colon (:). A v prefix before the version number is optional.

Assign revision information using the revision line

The revision line in Example 74 contains a revision number, date, and remark.

Example 74. Revision line with a version, date and remark

= The Intrepid Chronicles
Kismet Lee ①
2.9, October 31, 2021: Fall incarnation ② ③ ④

① The author line must be directly above the revision line.

② The revision line must begin with the revision number.

③ The date is separated from the version by a comma (,). The date can contain letters, numbers,
symbols, and attribute references.

④ The remark is separated from the date by a colon (:).

When the default stylesheet is applied, the revision information is displayed on the same line as the
author information. Note that the revision number is preceded with the word Version. This label is
automatically added by the processor. It can be changed or turned off with the version-label
attribute.

Let’s look at another revision line. In Example 75, the version starts with a letter, the date is a refer­
ence to the attribute docdate, and there’s a Unicode glyph in the remark.

Example 75. Revision line with a version prefix, attribute reference and Unicode glyph

= The Intrepid Chronicles
Kismet Lee
LPR55, {docdate}: A Special ⚄ Edition

The result of Example 75 is displayed below.

84 | Revision Information

LPR was removed from the version because any letters or symbols that precede the revision num­
ber in the revision line are dropped. To display the letters or symbols in front of a revision number,
set revnumber using an attribute entry.

Assign Revision Attributes with Attribute Entries

The revision information attributes can be set and assigned values with attribute entries.

When should I set revision attributes explicitly?

You should set the revision attributes explicitly when one of the following occurs:

• the document doesn’t have an author line,

• the document doesn’t have a revision number,

• you want the full value of the revision number—including any letter and symbol prefixes—to
be displayed, or

• a revision attribute’s value contains characters or elements that conflict with the revision line
syntax.

Set the revision attributes

The attributes revdate, revnumber and revremark are set and assigned values in Example 76. The
order of the attribute entries doesn’t affect their order in the byline of a rendered document.

Example 76. Set the revision attributes in the document header

= The Intrepid Chronicles
:revdate: April 4, 2022
:revnumber: LPR55 ①
:revremark: The spring incarnation of {doctitle} ②
:version-label!: ③

① Any non-numeric characters that precede the version number aren’t dropped when revnumber is
set using an attribute entry.

② The value of revremark can contain attribute references.

③ The version-label attribute is unset so that the word Version isn’t displayed in the byline.

The result of Example 76 is displayed below.

Revision Information | 85

The word Version is absent from the rendered document’s byline because the version-label
attribute was unset.

Version Label Attribute

The version-label attribute controls the version label displayed before the revision number in the
byline.

Change the version label in the byline

By default, version-label is assigned the value Version. This label can be changed by setting ver­
sion-label and assigning it a new value in the document header.

Example 77. Assign a new label to version-label

= The Intrepid Chronicles
Kismet Lee
v3: An icy winter incarnation
:version-label: Edition

The result of Example 77 is displayed below.

Notice that when revnumber is implicitly set using the revision line, any preceding letters are still
removed even though version-label is explicitly assigned a value.

Unset the version label

You can remove the default version label from the byline by unsetting the version-label attribute.
In an attribute entry, add a bang (!) to the attribute’s name.

Example 78. Unset version-label

= The Intrepid Chronicles
Kismet Lee
v3: An icy winter incarnation

86 | Revision Information

:!version-label:

The result of Example 78 is displayed below.

Reference the Revision Attributes

You can reference the revision information attributes in your document regardless of whether
they’re set via the revision line or attribute entries.

Reference revnumber

Remember, when revnumber is assigned via the revision line, any characters preceding the version
number are dropped. For instance, the revision number in Example 79 is prefixed with a v.

Example 79. Revision line and revision attribute references

= The Intrepid Chronicles
Kismet Lee
v8.3, July 29, 2025: Summertime!

== Colophon

[%hardbreaks]
Revision number: {revnumber}
Revision date: {revdate}
Revision notes: {revremark}

The result of Example 79 below shows that the v in the version number has been removed when it’s
rendered in the byline and referenced in the document.

Revision Information | 87

To display the entire value of revnumber when it’s referenced in the document, you must set and
assign it a value using an attribute entry.

Example 80. Revision attribute entries and references

= The Intrepid Chronicles
Kismet Lee
:revnumber: v8.3
:revdate: July 29, 2025
:revremark: Summertime!

== Colophon

[%hardbreaks]
Revision number: {revnumber}
Revision date: {revdate}
Revision notes: {revremark}

The entire value of the revnumber from Example 80 is displayed in the byline, including the default
version-label value Version. When referenced in the document, the entire value of revnumber is dis­
played because it was set with an attribute entry.

If you don’t want the default version label to be displayed in the byline, unset the version-label
attribute.

Document Metadata
Document metadata, such as a description of the document, keywords, and custom information,
can be assigned to attributes in the header. When converted to HTML, the values of these attributes
will correspond to elements contained in the <head> section of an HTML document.

Description

You can include a description of the document using the description attribute.

88 | Document Metadata

= The Intrepid Chronicles
Kismet Lee; Lazarus Draeke
:description: A story chronicling the inexplicable \ ①
hazards and unique challenges a team must vanquish \
on their journey to finding an open source \
project's true power.

This journey begins on a bleary Monday morning.

① If the document’s description is long, you can break the attribute’s value across several lines by
ending each line with a backslash \ that is preceded by a space.

When converted to HTML, the document description value is assigned to the HTML <meta> element.

Example 81. HTML output

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="Asciidoctor 2.0.11">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="A story chronicling the inexplicable
hazards and unique challenges a team must vanquish on their journey
to finding an open source project's true power.">
<title>The Intrepid Chronicles</title>
<style>

Keywords

The keywords attribute contains a list of comma separated values that are assigned to the HTML
<meta> element.

= The Intrepid Chronicles
Kismet Lee; Lazarus Draeke
:keywords: team, obstacles, journey, victory

This journey begins on a bleary Monday morning.

Example 82. HTML output

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="Asciidoctor 2.0.11">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="keywords" content="team, obstacles, journey, victory">

Document Metadata | 89

<title>The Intrepid Chronicles</title>
<style>

Custom metadata, styles, and functions

You can add content, such as custom metadata, stylesheet, and script information, to the header of
the output document using docinfo (document information) files. The docinfo file section details
what these files can contain and how to use them.

Document Header Reference

Attribute Values Converters Note
s

author, author_<n> user-defined all

authorinitials, authorini­
tials_<n>

Derived from author, user-defined all

description user-defined html

docinfo html, doc­
book

doctitle Derived from level 0 section title, user-defined all

email, email_<n> user-defined all

firstname, firstname_<n> Derived from author, user-defined all

keywords user-defined html

lastname, lastname_<n> Derived from author, user-defined all

middlename, middlename_<n> Derived from author, user-defined all

no-header-footer, -s empty all

noheader empty all

nofooter empty all

notitle empty all

revdate user-defined all

revnumber user-defined all

revremark user-defined all

showtitle empty all

title Derived from level 0 section title or doctitle,
user-defined

html, doc­
book

version-label Version, user-defined html

90 | Document Header Reference

Document Type
The document type (aka doctype) declares the expected structure of an AsciiDoc document. Asci­
iDoc defines a fixed set of document types. Each document type provides a slight variation on the
permitted structure of an AsciiDoc document to accommodate different uses cases.

The default doctype is article, which provides the foundation structure on which other doctypes
build. The book doctype permits multiple level-0 sections that act as part sections. The manpage doc­
type provides an extended header for defining standard metadata of a manpage, such as the vol­
ume number, man, and purpose. The inline doctype is intended for embedded scenarios.

Document types
Article (article)

The default doctype. In DocBook, this includes the appendix, abstract, bibliography, glossary, and
index sections. Unless you are making a book or a man page, you don’t need to worry about the
doctype. The default will suffice.

Book (book)

Builds on the article doctype with the additional ability to use a top-level title as part titles,
includes the appendix, dedication, preface, bibliography, glossary, index, and colophon. There’s
also the concept of a multi-part book, but the distinction from a regular book is determined by
the content. A book only has chapters and special sections, whereas a multi-part book is divided
by parts that each contain one or more chapters or special sections.

Man page (manpage)

Used for producing a roff or HTML-formatted manual page (man page) for Unix and Unix-like
operating systems. This doctype instructs the parser to recognize a special document header and
section naming conventions for organizing the AsciiDoc content as a man page. See Generate
Manual Pages from AsciiDoc for details on how structure a man page using AsciiDoc and gener­
ate it using Asciidoctor.

Inline (inline)

There may be cases when you only want to apply inline AsciiDoc formatting to input text with­
out wrapping it in a block element. For example, in the Asciidoclet project (AsciiDoc in Javadoc),
only the inline formatting is needed for the text in Javadoc tags.

Inline doctype rules
The rules for the inline doctype are as follows:

• Only a single paragraph is read from the AsciiDoc source.

• Inline formatting is applied.

• The output is not wrapped in the normal paragraph tags.

Given the following input:

Document types | 91

https://docs.asciidoctor.org/asciidoctor/latest/manpage-backend/
https://docs.asciidoctor.org/asciidoctor/latest/manpage-backend/

https://asciidoctor.org[AsciiDoc] is a _lightweight_ markup language...

Processing it with the options doctype=inline and backend=html5 produces:

AsciiDoc is a lightweight markup
language…

The inline doctype allows the AsciiDoc processor to cover the full range of applications, from
unstructured (inline) text to full, standalone documents!

92 | Inline doctype rules

Sections

Section Titles and Levels
Sections partition the document into a content hierarchy. A section is an implicit enclosure. Each
section begins with a title and ends at the next sibling section, ancestor section, or end of document.
Nested section levels must be sequential. A section can be a child of a document or another section,
but it cannot be the child of any other block (i.e., you cannot put a section inside of a delimited
block or list).

Section level syntax

A section title marks the beginning of a section and also acts as the heading for that section. The
section title must be prefixed with a section marker, which indicates the section level. The number
of equal signs in the marker represents the section level using a 0-based index (e.g., two equal signs
represents level 1). A section marker can range from two to six equal signs and must be followed by
a space.


The section title line is interpreted as paragraph text if it’s found inside of a non-
section block unless it marked as a discrete heading.

In the HTML output, the section title is represented by a heading tag. The number of the heading
tag is one more than the section level (e.g., section level 1 becomes an h2 tag). The section level
ranges from 0-5. This limit was established primarily due to the fact that HTML only provides head­
ing tags from h1 to h6 (making level 5 the upper limit).

Example 83. Section titles available in an article doctype

= Document Title (Level 0)

== Level 1 Section Title

=== Level 2 Section Title

==== Level 3 Section Title

===== Level 4 Section Title

====== Level 5 Section Title

== Another Level 1 Section Title

The section titles are rendered as:

Section Titles and Levels | 93

Document Title (Level 0)

Level 1 Section Title

Level 2 Section Title

Level 3 Section Title

Level 4 Section Title

Level 5 Section Title

Another Level 1 Section Title

Section levels must be nested logically. There are two rules you must follow:

1. A document can only have multiple level 0 sections if the doctype is set to book.

◦ The first level 0 section is the document title; subsequent level 0 sections represent parts.

2. Section levels cannot be skipped when nesting sections (e.g., you can’t nest a level 5 section
directly inside a level 3 section; an intermediary level 4 section is required).

For example, the following syntax is illegal:

= Document Title

= Illegal Level 0 Section (violates rule #1)

== First Section

==== Illegal Nested Section (violates rule #2)

Content above the first section title is designated as the document’s preamble. Once the first section
title is reached, content is associated with the section it is nested in.

== First Section

Content of first section

=== Nested Section

Content of nested section

94 | Section Titles and Levels

== Second Section

Content of second section


In addition to the equals sign marker used for defining section titles, Asciidoctor
recognizes the hash symbol (#) from Markdown. That means the outline of a Mark­
down document will be converted just fine as an AsciiDoc document.

Titles as HTML headings

When the document is converted to HTML 5 (using the built-in html5 backend), each section title
becomes a heading element where the heading level matches the number of equal signs. For exam­
ple, a level 1 section (==) maps to an <h2> element.

Activate Section Title Links

Turn section titles into links

To turn section titles into links, enable the sectlinks attribute. The default Asciidoctor stylesheet
displays linked section titles with the same color and styles as unlinked section titles.

Add § to section titles

When the sectanchors attribute is enabled on a document, an anchor (empty link) is added before
the section title. The default Asciidoctor stylesheet renders the anchor as a section entity (§) that
floats to the left of the section title.

Autogenerate Section IDs
Sections and discrete headings support automatic ID generation. Unless you’ve assigned a custom
ID to one of these blocks, or you’ve unset the sectids document attribute, the AsciiDoc processor
will automatically generate and assign an ID for the block using the title. This page explains how
the ID is derived and how to control this behavior.

How a section ID is computed

The AsciiDoc processor builds an ID from the title using the following order of events and rules:

• Inline formatting is applied (in title substitution order).

• All characters are converted to lowercase.

• The value of the idprefix attribute (_ by default) is prepended.

• Character references, HTML/XML tags (not their contents), and non-word characters (except for
space, hyphen, and period) are removed.

• Spaces, hyphens, and periods are replaced with the value of the idseparator attribute (_ by
default)

Autogenerate Section IDs | 95

• Repeating separator characters are condensed.

• If necessary, a sequence number is appended until the ID is unique within the document.

The generated ID can be expected to be safe to use in an HTML document. However, it’s important
to understand that the generated ID does not necessarily conform to an NT-Name, as required by
the XML specification. If you intend to produce DocBook from your AsciiDoc document(s), and your
section titles uses word characters that are not permitted in an XML ID, the onus is on you to either
provide an explicit ID that is conforming, or encode those invalid ID characters using a character
reference (e.g., Ⅱ).

With those rules in mind, given the following section title:

== Wiley & Sons, Inc.

the processor will produce the following ID:

_wiley_sons_inc

You can toggle ID autogeneration on and off using sectids and customize the ID prefix and word
separator.



If the section title contains a forward looking xref (i.e., an xref to an element that
comes later in document order), you must either assign a custom ID to the block or
disable ID generation around the title. Otherwise, the AsciiDoc processor may
warn that the reference is invalid. This happens because, in order to generate an
ID, the processor must convert the title. This conversion happens before the
processor has visited the target element. As a result, the processor is not able to
lookup the reference and therefore must consider it invalid.

Disable automatic section ID generation

To disable autogeneration of section and discrete heading IDs, unset the sectids attribute.

:!sectids:

Custom IDs are still used even when automatic section IDs are disabled.

You can unset this attribute anywhere that attribute entries are permitted in the document. By
doing so, you can disable ID generation for only certain sections and discrete headings.

== ID generation on

:!sectids:
== ID generation off
:sectids:

96 | Autogenerate Section IDs

https://www.w3.org/TR/REC-xml/#NT-Name

== ID generation on again

If you disable autogenerated section IDs, and you don’t assign a custom ID to a section or discrete
headings, you won’t be able to create cross references to that element.

Change the ID Prefix and Separator

When an AsciiDoc processor auto-generates section IDs, it begins the value with an underscore and
uses a hyphen between each word. These characters can be customized with the idprefix and
idseparator attributes.

Change the ID prefix

By default, the AsciiDoc processor begins an auto-generated section ID with an underscore (_). This
default can cause problems when referencing the ID in an xref (either within the same file or a
deep link to another file). The leading underscore may get paired with an underscore somewhere
else in the paragraph, thus resulting in unexpected text formatting. One workaround is to disrupt
the match by prefixing the ID with {empty} (e.g., {empty}_section_title) or using an attribute to
refer to the target. Instead, we strongly encourage you to customize the ID prefix.

You can change this prefix by setting the idprefix attribute and assigning it a new value. The value
of idprefix must begin with a valid ID start character and can have any number of additional valid
ID characters.

:idprefix: id_

If you want to remove the prefix, set the attribute to an empty value.

:idprefix:



If you set the idprefix to empty, you could end up generating IDs that are invalid
in DocBook output (e.g., an ID that begins with a number) or that match a built-in
ID in the HTML output (e.g., header). In this case, we recommend either using a
non-empty value of idprefix or assigning explicit IDs to your sections.

Change the ID word separator

The default section ID word separator is an underscore (_). You can change the separator with the
idseparator attribute. Unless empty, the value of the idseparator must be exactly one valid ID char­
acter.

:idseparator: -

If you don’t want to use a separator, set the attribute to an empty value.

Autogenerate Section IDs | 97

:idseparator:


When a document is rendered on GitHub, the idprefix is set to an empty value and
the idseparator is set to -. These settings are used to ensure that the IDs generated
by GitHub match the IDs generated by Asciidoctor.

Assign Custom IDs and Reference Text
You can assign a custom ID and optional reference text (i.e., label) to a section (see anchor). The cus­
tom ID is used in place of the autogenerated ID. This can be useful when you want to define a stable
anchor for linking to a section using a cross reference. The reference text is used when referencing
the ID without specifying explicit text. This is a good way to centrally manage the automatic refer­
ence text that is used to refer to a section.

Here’s an example of a section with a custom ID:

[#tigers-subspecies]
=== Subspecies of Tiger

Here’s an example of a section with a custom ID and reference text:

[#tigers-subspecies,reftext=Subspecies]
=== Subspecies of Tiger

 The value of the reftext attribute must be quoted if it contains spaces or commas.

The ID and reference text can also be defined using the block anchor syntax:

[[tigers-subspecies,Subspecies]]
=== Subspecies of Tiger

When using the block anchor syntax, the ID must conform to the XML Name rules, which means
the ID must start with a letter, an underscore, or a colon.


AsciiDoc allows all valid UTF-8 characters to be used in section IDs. If you’re gener­
ating a PDF from AsciiDoc using a2x and dblatex, see Using UTF-8 titles with a2x to
learn about the required latex.encoding=utf8 switch to activate this portability.

Assign auxiliary IDs

A section title can only have a single primary ID. However, it’s possible to register auxiliary IDs on a
section title for referencing from the URL using inline anchors. This feature works regardless of
whether you assign an explicit (primary) ID.

98 | Assign Custom IDs and Reference Text

https://www.w3.org/TR/REC-xml/#NT-Name
https://aerostitch.github.io/misc/asciidoc/asciidoc-title_uft8.html


If possible, you should avoid adding inline anchors on a section title. However, if
you need to be able to link to that section from a URL using alternate fragment
identifiers, this is what you need to use.

Here’s how to register auxiliary IDs using inline anchors when using an autogenerated ID:

Example 84. Register auxiliary IDs at the beginning of the section title

== [[secondary-id]][[tertiary-id]]Section Title

Example 85. Register auxiliary IDs at the end of the section title

== Section Title[[secondary-id]][[tertiary-id]]

Where you place the inline anchor is where the anchor will end up in the output. The beginning is
the preferred location.

These additional anchor points don’t interfere with the declaration of the primary ID, as shown in
the next example.

Example 86. Register auxiliary IDs on a section title with an explicit ID

[#primary-id]
== [[secondary-id]][[tertiary-id]]Section Title



These auxiliary IDs are not registered with the referencing system. That means
they cannot be used for referencing the section title within the document. They are
only intended for assigning auxiliary fragment identifiers to the section title so it
can be referenced the from the URL using a URL fragment (aka deep linking). Only
the primary ID can be used for referencing the section title within the document.

Section Numbers

Turn on section numbers

Sections aren’t numbered by default. However, you can enable this feature by setting the attribute
sectnums.

= Title
:sectnums:

When sectnums is set, level 1 (==) through level 3 (====) section titles are prefixed with arabic num­
bers in the form of 1., 1.1., etc. Section numbers can be set and unset via the document header, CLI,
and API. Once you’ve set sectnums, you can reduce or increase the section levels that get numbered
in the whole document with the sectnumlevels attribute. You can also control whether a section is
numbered on a section by section basis.

Section Numbers | 99

Toggle section numbers on or off per section

The sectnums attribute is a unique attribute. It’s a flexible attribute, which means it can be set and
unset midstream in a document, even if it is enabled through the API or CLI. This allows you to tog­
gle numbering on and off throughout a document.

To turn off numbering for one or more sections, insert the attribute above the section where you
want numbering to cease and unset it by adding an exclamation point to the end of its name. To
turn section numbering back on midstream, reset the attribute above the section where numbering
should resume.

= Title
:sectnums:

== Numbered Section

:sectnums!:

== Unnumbered Section

== Unnumbered Section

=== Unnumbered Section

:sectnums:

== Numbered Section

For regions of the document where section numbering is turned off, the section numbering will not
be incremented. Given the above example, the sections will be numbered as follows:

1. Numbered Section

Unnumbered Section

Unnumbered Section

Unnumbered Section

2. Numbered Section

The section number does not increment in regions of the document where section numbers are
turned off.

sectnums order of precedence

If sectnums is set on the command line or API, it overrides the value set in the document header, but
it does not prevent the document from toggling the value for regions of the document.

100 | Section Numbers

If it is unset (sectnums!) on the command line or API, then the numbers are disabled regardless of
the setting within the document.

Specify the section levels that are numbered

When sectnums is set, level 1 (==) through level 3 (====) section titles are numbered by default. You
can increase or reduce the section level limit by setting the sectnumlevels attribute and assigning it
the section level you want it to number. The sectnumlevels attribute accepts a value of 0 through 5,
and it can only be set in the document header.

= Title
:sectnums:
:sectnumlevels: 2 ①

① When the sectnumlevels attribute is assigned a value of 2, level 3 through 5 section titles are not
numbered.

When the doctype is book, level 1 sections become chapters. Therefore, a sectnumlevels of 4 trans­
lates to 3 levels of numbered sections inside each chapter.

Assigning sectnumlevels a value of 0 is effectively the same as disabling section numbering (sect­
nums!). However, if your document is a multi-part book with part numbering enabled, then you’d
have to set sectnumlevels to -1 to disable part numbering too (the equivalent of partnums!).

Section Styles for Articles and Books
AsciiDoc provides built-in styles for the specialized front matter and back matter sections found in
journal articles, academic papers, and books. These styled sections are referred to as special sec­
tions. The document type, article or book, determines which section styles are available for use.

Book section styles

The following section styles are permitted in the book document type:

• abstract (becomes a chapter)

• colophon

• dedication

• acknowledgments

• preface

• partintro (must be first child of part)

• appendix

• glossary

• bibliography

• index

Section Styles for Articles and Books | 101

part-numbers-and-labels.pdf#partnums

The following styles are implied by the location of the section in the document and are thus not spe­
cial sections.

• part

• chapter

Article section styles

The following section styles are permitted in the article document type:

• abstract

• appendix

• glossary

• bibliography

• index

Hide Special Section Titles

If supported by the converter, the title of a special section, such as the Dedication, can be turned off
by setting the notitle option (e.g., %notitle or opts=notitle) (previously untitled) on the section.

[dedication%notitle]
== Dedication

For S.S.T.--

thank you for the plague of archetypes.

Although the title is hidden in the output document, it still needs to be specified in the AsciiDoc
source for the purpose of referencing. The title will be used as the reftext of a cross reference, just
as with any section.

Number Special Sections

Sections that are assigned a built-in special style aren’t numbered by default. To number regular
sections as well as special sections, set sectnums and assign it a value of all.

= Title
:sectnums: all

The assignment of appendix numbers isn’t affected by sectnums as their section title prefixes are
controlled by the attribute appendix-caption. Book parts aren’t numbered by sectnums either,
instead, they’re controlled by partnums.

102 | Section Styles for Articles and Books

part-numbers-and-labels.pdf
part-numbers-and-labels.pdf

Colophon

A colophon contains factual information about the book, particularly relating to its production. It
may include information such as the ISBN, publishing house, edition and copyright dates, legal
notices and disclaimers, typographic style, fonts and paper used, cover art and layout credits, bind­
ing method, and any other significant production notes.

The colophon (or colophons), if present, almost always occur at the very beginning (front matter) or
end (back matter) of a book. However, they can also be placed anywhere in an AsciiDoc manuscript
as a top-level section. In a printed book, the colophon is often found on the verso side of the title
page.

Colophon section syntax

To use the colophon section style, the document type must be book. If the book does not have parts,
the colophon must be a level 1 section (==).

[colophon]
== Colophon

The Asciidoctor Press, Ceres and Denver.

(C) 2020 by The Asciidoctor Press

Published in the Milky Way Galaxy.

This book is designed by Dagger Flush, Denver, Colorado.
The types are handset Volcano Dust and Papaya, designed by Leeloo.
Leeloo created the typefaces to soften the bluntness of documentation.

Built with Asciidoctor on Fedora 33.

Printing and binding by Ceres Lithographing, Inc., Ceres, Milky Way.

If the book has parts, the colophon must be a level 0 section (=).

[colophon]
= Colophon

The Asciidoctor Press, Ceres and Denver.

(C) 2020 by The Asciidoctor Press

Published in the Milky Way Galaxy.

This book is designed by Dagger Flush, Denver, Colorado.
The types are handset Volcano Dust and Papaya, designed by Leeloo.
Leeloo created the typefaces to soften the bluntness of documentation.

Section Styles for Articles and Books | 103

Built with Asciidoctor on Fedora 33.

Printing and binding by Ceres Lithographing, Inc., Ceres, Milky Way.

The colophon will only be numbered if the sectnums attribute has the value all.

Dedication

A dedication page is used to express gratitude.

Dedication section syntax

To use the dedication section style, the document type must be book. The dedication section must be
a level 1 section (==), unless the book has parts.

[dedication]
== Dedication

For S.S.T.--

thank you for the plague of archetypes.

If the book has parts, the dedication section must be a level 0 section (=).

[dedication]
= Dedication

For S.S.T.--

thank you for the plague of archetypes.

Abstract (Section)

An abstract is a concise overview of an article. The abstract section style can be used in the article
document type.

Abstract section syntax

The abstract section style must be set on the first section of the article, as seen in the example
below:

= Article Title

[abstract]
== Abstract

Documentation is a distillation of many long adventures.

104 | Section Styles for Articles and Books

== Section Title

If you want to style a paragraph or an open block as an abstract, instead of a whole section, see the
abstract block style documentation.

Abstract (Block)

An abstract is a concise overview of a document. The abstract block style can be placed on an open
block or paragraph. Here’s an example of the abstract block style set on a paragraph:

= Document Title

[abstract]
.Abstract
Documentation is a distillation of many long adventures.

== First Section

The abstract block style does not require the open block or paragraph to have a title, and it does not
depend on a subsequent section to terminate it.

= Document Title

[abstract]
--
This article will take you on a wonderful adventure of knowledge.

You'll start with the basics.
Beyond that, where you go is up to you.
--

Your journey begins here.


To include a quote at the beginning of a chapter in a book, wrap a quote block
inside an abstract block.

There’s also an abstract section style.

Preface

A preface is a special section that precedes the first chapter of a book or a book part.

Preface for a book

The preface section style can only be used when the doctype is book. A preface can contain subsec­
tions. When a book doesn’t contain parts, the preface must be defined as a level 1 section (==) and

Section Styles for Articles and Books | 105

any preface subsections must start at level 2 (===).

= Book Title
:doctype: book

[preface]
== Our Preface

I awoke one morning and was confronted by the dark and stormy eyes of the chinchilla.
She had conquered the mountain of government reports that had eroded into several
minor foothills and a creeping alluvial plain of loose papers.

=== Preface Subsection

Chinchillas rule the world.

== Chapter 1

...

Preface for a book part

To create a preface for a book part, the preface must be defined as a level 1 section (==) and any
subsections must start at level 2 (===). The preface must be the first section in the part.

= Book Title
:doctype: book

= Part 1

[preface]
== Part 1 Preface

The preface for part 1.

=== Preface Subsection

More part 1 prefacing.

== Chapter 1

...

Book Parts

Parts can only be used when the document type is book. The presence of at least one part implies
that the document is a multi-part book. (There’s no dedicated doctype for a multi-part book to distin­
guish it from a book with only chapters).

106 | Section Styles for Articles and Books

Anatomy of a part

A part is a level 0 section. A part must contain at least one level 1 section. The first part is the first
level 0 section in the document that comes after the document title. Like the document title, a part
is designated by a level 0 section title (=).

= Book Title
:doctype: book

= Part I

...

A part can have an optional introduction (similar to the preamble of the document), known as a
part intro. The part intro is the content between the part title and the first section in the part. The
part intro can be marked explicitly using the partintro style on either a paragraph or open block.

AsciiDoc provides document attributes to control the numbering and labeling parts.

Part intro

The content between the part title and the first section in the part is the part intro. Normally, the
part intro is inferred, as shown here:

= Book Title
:doctype: book

= Part I

This is the implicit partintro.

== Chapter A

You can mark the part intro explicitly by adding the partintro style on the sole block before the first
section.

= Book Title
:doctype: book

= Part I

[partintro]
This is the implicit partintro.

== Chapter A

Section Styles for Articles and Books | 107

part-numbers-and-labels.pdf

Special sections for parts

A part can have its own preface, bibliography, glossary and index.

= Multi-Part Book with Parts that Have Special Sections
Author Name <author@example.com>
:doctype: book

[preface]
= Book Preface

This is the preface for the whole book.

=== Preface Subsection

Chinchillas rule the world.

= Part 1

This is the introduction to the first part of our mud-encrusted journey.

== Chapter 1

There was mud...

== Chapter 2

Great gobs of mud...

[glossary]
== Part 1 Glossary

[glossary]
mud:: wet, cold dirt

= Part 2

[preface]
== Part 2 Preface

This is a preface just for part 2.

== Chapter 3

The mud had turned to cement...

Special sections can also be correlated directly with the book, as part siblings. Since the book pref­
ace in the previous example comes before the first part, you can write it as level 1 section if you
prefer.

108 | Section Styles for Articles and Books

[preface]
== Book Preface

This is the preface for the whole book.

=== Preface Subsection

Chinchillas rule the world.

Read on to find out how to use special sections as part siblings.

Special sections as part siblings

In a multi-part book, parts occupy the top level in the hierarchy. If you were to define a special sec­
tion at level 1 that follows a part in a multi-part book, it will become a child of that part. If you want
the special section to be owned by the book instead, as a sibling of parts, it must be defined at the
top level too.

The AsciiDoc syntax allows special sections in a multi-part book to be defined using a level 0 section
title (i.e., =). When the document is parsed, the level of the special section will automatically be
adjusted to a level 1 section in the model. Despite this level change, the special section remains as a
sibling of parts in the hierarchy. The one level of offset (level 0 instead of level 1) is only a hint to
the parser to make the special section a sibling of parts.

You can see this syntax used for the appendix in the following example.

= Multi-Part Book
:doctype: book

= Part Title

== Chapter Title

[appendix]
= Appendix Title

For consistency, it’s best to also make special sections part-like if they come before the first part.
However, technically the syntax doesn’t require it.

= Multi-Part Book
:doctype: book

[preface]
= Book Preface

= Part Title

Section Styles for Articles and Books | 109

== Chapter Title

If the special section supports nested sections, the next level must be level 2 (i.e., ===), since the spe­
cial section itself has level 1. Here’s an example of a multi-part book that has a special section
before the part and a special section with subsections after the part.

= Multi-Part Book with Special Sections
Author Name <author@example.com>
:doctype: book
:toc:

[colophon]
= The Colophon

Text at the beginning of a book describing facts about its production.

= The First Part

== The First Chapter

Chapters can be grouped by preceding them with a level 0 Book Part title.

[appendix]
= The Appendix

=== Basics

A multipart book can have appendixes, which should be defined at section level 0.

=== Subsections

Subsections of an appendix in a multipart book should start at level 2.

When you convert this document, notice that the special sections are siblings of the part in the table
of contents.

110 | Section Styles for Articles and Books

Notice that the subsections of the special sections are only a single level below the parent section
rather than two levels below.

Part Numbers and Signifier

Number book parts

Book part numbers are controlled by the partnums attribute, not sectnums. To autogenerate part
numbers, set the partnums attribute in the book header.

= The Secret Manual
:doctype: book
:sectnums:
:partnums:

= Defensive Operations

== An Introduction to DefenseOps

= Managing Werewolves

When rendered, part numbers are displayed as Roman numerals.

Part I. Defensive Operations
1. An Introduction to DefenseOps
Part II. Managing Werewolves

Customize the part signifier

The signifier (i.e., prefix) Part is automatically added to the beginning of the part titles when the
partnums attribute is set. The signifier is offset from the auto-generated part number by a space. You
can modify the signifier by defining the part-signifier attribute in the header of your book.

:part-signifier: Component

To remove the prefix, unset the part-signifier attribute in the document header:

:!part-signifier:

Chapters

Customize the chapter signifier

If the chapter-signifier (i.e., prefix) is set, the value of this attribute is automatically added to the
beginning of chapter titles in a book when the sectnums attribute is also set. The signifier is offset
from the auto-generated chapter number by a space. For example, the chapter title may appear in

Section Styles for Articles and Books | 111

the output document as follows:

Chapter 1. Title

A chapter is defined as a level 1 section without a block style when the doctype type is book. You
can modify the signifier by defining the chapter-signifier attribute in the header of your book.

:chapter-signifier: Peatükk

To remove the prefix, unset the chapter-signifier attribute in the document header:

:!chapter-signifier:

Appendix

The appendix section style can be used in books and articles, and it can have subsections. While the
AsciiDoc structure allows appendices to be placed anywhere, it’s customary to place them near the
end of the document.

Appendix section syntax

For articles, the appendix must be defined as a level 1 section (==). For example:

= Article Title
:appendix-caption: Exhibit
:sectnums:
:toc:

== Section

=== Subsection

[appendix]
== First Appendix

=== First Subsection

=== Second Subsection

[appendix]
== Second Appendix

The table of contents will appear as follows:

1. Section

112 | Section Styles for Articles and Books

 1.1. Subsection
Exhibit A: First Appendix
 A.1. First Subsection
 A.2. Second Subsection
Exhibit B: Second Appendix

For books, the appendix must be defined as a level 1 section (==) if you want the appendix to be a
adjacent to the chapters. In a multi-part book, if you want the appendix to be adjacent to other
parts, the appendix must be defined as a level 0 section (=). In either case, the first subsection of the
appendix must be a level 2 section (===).

The following example shows how to define an appendix for a multi-part book.

= Book Title
:doctype: book
:sectnums:
:toc:

= First Part

== Chapter

=== Subsection

== Second Part

== Chapter

[appendix]
= First Appendix

=== First Subsection

=== Second Subsection

[appendix]
= Second Appendix

The table of contents will appear as follows:

First Part
1. Chapter
 1.1. Subsection
Second Part
2. Chapter
Appendix A: First Appendix
 A.1. First Subsection
 A.2. Second Subsection

Section Styles for Articles and Books | 113

Appendix B: Second Appendix

Appendix label

When rendered, the titles of sections marked as appendix will include:

• A label, taken from the value of the appendix-caption attribute, which defaults to “Appendix”

• A letter that represents the order of the appendix within the sequence of appendices (A, B, …)

• A colon

• The section title

For example:

Appendix A: Data Access Matrix

The prefix can be modified by setting the appendix-caption attribute and overriding the default
value with a custom value.

:appendix-caption: Exhibit

Unset the attribute to remove the prefix.

:appendix-caption!:

Glossary

You can include a glossary in an article, book, and book part by setting the glossary style on a sec­
tion.

Glossary section syntax

The glossary section is defined as a level 1 section (==) when:

• the doctype is article

• the doctype is book and the book doesn’t contain any parts

• the glossary is for a book part

[glossary]
== Terminology

If the book has parts, and the glossary is for the whole book, the section is defined as a level 0 sec­
tion (=).

114 | Section Styles for Articles and Books

[glossary]
= Glossary

Glossary description list style syntax

In addition to setting glossary on the section, the block style glossary must be set on the description
list in the section.

[glossary]
== Glossary

[glossary]
mud:: wet, cold dirt
rain::
 water falling from the sky

Bibliography

AsciiDoc has basic support for bibliographies. AsciiDoc doesn’t concern itself with the structure of
the bibliography entry itself, which is entirely freeform. What it does is provide a way to make ref­
erences to the entries from the same document and output the bibliography with proper semantics
for processing by other toolchains (such as DocBook).

Bibliography section syntax

To conform to output formats, a bibliography must be its own section at any level. The section must
be assigned the bibliography section style. By adding the bibliography style to the section, you
implicitly add it to each unordered list in that section.

You would define the bibliography as a level 1 section (==) when:

• the doctype is article

• the doctype is book and the book doesn’t contain any parts

• the bibliography is for a part

[bibliography]
== Bibliography

You can also define it as a deeper section, in which case the doctype doesn’t matter and it’s scoped
to the parent section.

If the book has parts, and the bibliography is for the whole book, the section is defined as a level 0
section (=).

[bibliography]

Section Styles for Articles and Books | 115

= Bibliography

Bibliography entries syntax

Bibliography entries are declared as items in an unordered list.

Example 87. Bibliography with references

The Pragmatic Programmer <<pp>> should be required reading for all developers.
To learn all about design patterns, refer to the book by the "`Gang of Four`" <<gof>>.

[bibliography]
== References

* [[[pp]]] Andy Hunt & Dave Thomas. The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley. 1999.
* [[[gof,gang]]] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. 1994.

In order to reference a bibliography entry, you need to assign a non-numeric label to the entry. To
assign this label, prefix the entry with the label enclosed in a pair of triple square brackets (e.g.,
[[[sections:bibliography:::label]]]). We call this a bibliography anchor. Using this label, you can
then reference the entry from anywhere above the bibliography in the same document using the
normal cross reference syntax (e.g., <<label>>).

The Pragmatic Programmer [sections:bibliography:::pp] should be required reading for all devel­
opers. To learn all about design patterns, refer to the book by the “Gang of Four” [gang].

References
▪ [sections:bibliography:::pp] Andy Hunt & Dave Thomas. The Pragmatic Programmer: From

Journeyman to Master. Addison-Wesley. 1999.

▪ [gang] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley. 1994.


To escape a bibliography anchor anywhere in the text, use the syntax [[[sec­
tions:bibliography:::word]]]. This prevents the anchor from being matched as a
bibliography anchor or a normal anchor.

By default, the bibliography anchor and reference to the bibliography entry is converted to
[<label>], where <label> is the ID of the entry. If you specify xreftext on the bibliography anchor
(e.g., [[[sections:bibliography:::label,xreftext]]]), the bibliography anchor and reference to the
bibliography entry converts to [<xreftext>] instead.

If you want the bibliography anchor and reference to appear as a number, assign the number of the
entry using the xreftext. For example, [[[sections:bibliography:::label,1]]] will be converted to
[1].

116 | Section Styles for Articles and Books

If you want more advanced features such as automatic numbering and custom citation styles, try
the asciidoctor-bibtex project.

Index

You can mark index terms explicitly in AsciiDoc content. Index terms form a controlled vocabulary
that can be used to navigate the document by keyword starting from an index.

Index catalog


Although index terms are always processed, only Asciidoctor PDF and the DocBook
toolchain support creating an index catalog automatically. The built-in HTML5 con­
verter in Asciidoctor does not generate an index.

To create an index, define a level 1 section (==) marked with the style index at the end of your docu­
ment. (In a multipart book, the index can be the last level 0 section (=)).

[index]
== Index

Both Asciidoctor PDF and the DocBook toolchain will automatically populate an index into this seed
section.

The index will consist of term entries that link to (or otherwise cite) the location of each marked
index term. You learn how to mark an index term in the next section.

Index terms

Every index term, as well as every occurrence of that index term, must be explicitly marked in the
AsciiDoc document. It’s not enough just to mark the first occurrence of an index term if you want
every occurrence to appear in the index. Instead, each occurrence you want to be cited in the index
must be marked explicitly.

There are two types of index terms in AsciiDoc:

flow index term

indexterm2:[<primary>]
((<primary>))

An index term that appears in the flow of text (i.e., a visible term) and in the index. This type of
index term can only be used to define a primary entry and is case sensitive. If you want the
entry to appear in the index using a different case, use an adjacent concealed index term, such
as (((term)))Term.

concealed index term

indexterm:[<primary>, <secondary>, <tertiary>]
(((<primary>, <secondary>, <tertiary>)))

Section Styles for Articles and Books | 117

https://github.com/asciidoctor/asciidoctor-bibtex

A group of index terms that appear only in the index. This type of index term can be used to
define a primary entry as well as optional secondary and tertiary entries.

Here’s an example that shows the two forms in use.

The Lady of the Lake, her arm clad in the purest shimmering samite,
held aloft Excalibur from the bosom of the water,
signifying by divine providence that I, ((Arthur)), ①
was to carry Excalibur(((Sword, Broadsword, Excalibur))). ②
That is why I am your king. Shut up! Will you shut up?!
Burn her anyway! I'm not a witch.
Look, my liege! We found them.

indexterm2:[Lancelot] was one of the Knights of the Round Table. ③
indexterm:[knight, Knight of the Round Table, Lancelot] ④

① The double parenthesis form adds a primary index term and includes the term in the generated
output.

② The triple parenthesis form allows for an optional second and third index term and does not
include the terms in the generated output (i.e., concealed index term).

③ The inline macro indexterm2:[primary] is equivalent to the double parenthesis form.

④ The inline macro indexterm:[primary, secondary, tertiary] is equivalent to the triple parenthe­
sis form.

If you’re defining a concealed index term (i.e., the indexterm macro), and one of the terms contains a
comma, you must surround that segment in double quotes so the comma is treated as content. For
example:

I, King Arthur.
indexterm:[knight, "Arthur, King"]

or

I, King Arthur.
(((knight, "Arthur, King")))

Placement of hidden index terms

Hidden index entries should be directly adjacent to the paragraph content to which they apply.
Example 88 shows where to place hidden index terms for a paragraph.

Example 88. Correct

=== Create a new Git repository

(((Repository, create)))

118 | Section Styles for Articles and Books

(((Create Git repository)))
To create a new git repository,

If the terms are offset from the paragraph content by an empty line, it will cause an empty para­
graph to be created in the parsed document, thus leaving extra space in the generated output.
Example 89 and Example 90 show where you should not place hidden index terms for a paragraph.

Example 89. Incorrect

=== Create a new Git repository

(((Repository, create)))
(((Create Git repository)))

To create a new git repository,

Example 90. Also incorrect

=== Create a new Git repository
(((Repository, create)))
(((Create Git repository)))

To create a new git repository,

Section Attributes and Styles Reference

Section attributes

Feature Attribute Value(s) Notes

Appendix label appendix-
caption

Appendix (default) or
user defined text

Chapter signifier chapter-
signifier

Chapter (default) or user
defined text

book doctype only; default only
set in Asciidoctor PDF

Discrete heading discrete NA

ID prefix idprefix _ (default) or user
defined text

Set by default

ID word separator idseparator _ (default) or user
defined character

Set by default

Part signifier part-signi­
fier

Part (default) or user
defined text

book doctype only

Part numbers partnums NA book doctype only

Section anchor sectanchors NA

Section ID sectids NA Set by default

Section Attributes and Styles Reference | 119

discrete-headings.pdf
part-numbers-and-labels.pdf#part-signifier
part-numbers-and-labels.pdf

Feature Attribute Value(s) Notes

Section link sectlinks NA

Section numbers and spe­
cial section numbers

sectnums empty (default) or all Can be toggled on or off in the
flow of the document

Section numbers level
depth

sectnum­
levels

3 (default) when sect­
nums is set; 0 through 5

Value of 0 is the same as sect­
nums!

Hide special section title options or % untitled DocBook only; can only be set
on special sections

Section styles

Feature Style Name Doctypes Converters

Abstract abstract article All

Acknowledgments acknowledgments book All

Appendix appendix All All

Bibliography bibliography All All

Colophon colophon book All

Dedication dedication book All

Glossary glossary All All

Index index All DocBook

Preface preface book All

120 | Section Attributes and Styles Reference

Paragraphs
The primary block type in most documents is the paragraph. That’s why in AsciiDoc, you don’t need
to use any special markup or attributes to create paragraphs. You can just start typing sentences
and that content becomes a paragraph.

This page introduces you to the paragraph in AsciiDoc and explains how to set it apart from other
paragraphs.

Create a paragraph
Adjacent or consecutive lines of text form a paragraph element. To start a new paragraph after
another element, such as a section title or table, hit the RETURN key twice to insert an empty line, and
then continue typing your content.

Example 91. Two paragraphs in an AsciiDoc document

Paragraphs don't require any special markup in AsciiDoc.
A paragraph is just one or more lines of consecutive text.

To begin a new paragraph, separate it by at least one empty line from the previous
paragraph or block.

The result of Example 91 is displayed below.

Paragraphs don’t require any special markup in AsciiDoc. A paragraph is just one or more
lines of consecutive text.

To begin a new paragraph, separate it by at least one empty line from the previous paragraph
or block.

Hard Line Breaks
Adjacent lines of regular text in AsciiDoc are combined into a single paragraph when converted.
That means you can wrap paragraph text in the source document, either at a specific column or by
putting each sentence or phrase on its own line. The line breaks separating adjacent lines won’t
appear in the output. Instead, the line break will be (effectively) converted to a single space. (In fact,
all repeating space characters are reduced to a single space, just like in HTML.)


Hard line breaks are automatically retained in literal, listing, source, and verse
blocks and paragraphs.

If you want line breaks in a paragraph to be preserved, there are several techniques you can use.
For any single line, you can terminate it with a space followed by a plus sign. This syntax signals to
the processor to end the line in the output with a hard line break.

Create a paragraph | 121

line one +
line two

To add this behavior to every line in the paragraph, set the hardbreaks option on the paragraph
instead.

[%hardbreaks]
line one
line two

Alternately, you can tell the processor to preserve all line breaks in every paragraph in the docu­
ment by setting the hardbreaks-option document attribute, though this option should be used wisely.

:hardbreaks-option:

line one
line two

To insert an empty line in the middle of the paragraph, you can use the hard line break syntax on a
line by itself. This allows you to insert space between lines in the output without introducing sepa­
rate paragraphs.

line one +
 +
line three

If you want the paragraph to start with a hard line break, you need to place an {empty} attribute ref­
erence at the start of the line. That’s because a line that starts with a space has a different meaning.
The {empty} attribute reference allows you to insert nothing at the start of the line.

{empty} +
line two

To be consistent, you can always start an empty line with {empty}.

{empty} +
line two +
{empty} +
line four

Note that empty is a built-in document attribute in AsciiDoc.

If you’re writing a story with dialogue, and you want to prefix the dialogue lines with --, the per-

122 | Hard Line Breaks

line syntax is the most appropriate choice. For example:

-- Come here! -- I said. +
-- What is it? -- replied Lance.

If you were to use the hardbreaks option instead, the second -- would not only be substituted with
an endash, it would also consume the preceding newline. As a result, both lines in the source would
end up appearing on the same line in the output.

Inline line break syntax

To preserve a line break in a paragraph, insert a space followed by a plus sign (+) at the end of the
line. This results in a visible line break (e.g.,
) following the line.

Example 92. Line breaks preserved using a space followed by the plus sign (+)

Rubies are red, +
Topazes are blue.

The result of Example 92 is displayed below.

Rubies are red,
Topazes are blue.

hardbreaks option

To retain all of the line breaks in an entire paragraph, assign the hardbreaks option to the paragraph
using an attribute list.

Example 93. Line breaks preserved using the hardbreaks option

[%hardbreaks]
Ruby is red.
Java is beige.

The result of Example 93 is displayed below.

Ruby is red.
Java is beige.

hardbreaks-option attribute

To preserve line breaks in all paragraphs throughout your entire document, set the hardbreaks-
option document attribute in the document header.

Hard Line Breaks | 123

Example 94. Line breaks preserved throughout the document using the hardbreaks-option attribute

= Line Break Doc Title
:hardbreaks-option:

Rubies are red,
Topazes are blue.

Preamble and Lead Style

Preamble

Content between the end of the document header and the first section title in the document body is
called the preamble. A preamble is optional.

Example 95. Preamble

= The Intrepid Chronicles

This adventure begins on a frigid morning.
We've run out of coffee beans, but leaving our office means venturing into certain
peril.
Yesterday, a colony of ravenous Wolpertingers descended from the foothills.
No one can find the defensive operations manual, and our security experts are on an
off-the-grid team-building retreat in Katchanga.

What are we going to do?

== Certain Peril

Daylight trickles across the cobblestones...

When using the default Asciidoctor stylesheet, if the first paragraph does not have an explicit role,
it is styled as if it has the lead role. The result of Example 95 is displayed below.

124 | Preamble and Lead Style

Lead role

Apply the lead role to any paragraph, and it will render using a larger font size. The lead role is
assigned to the role attribute. You can set role using the classic or shorthand method.

Example 96. Setting role to lead using the shorthand syntax

== Section title

This is a regular paragraph.

[.lead]
This is a paragraph styled as a lead paragraph.

The result of Example 96 is displayed below.

When you convert a document to HTML using the default stylesheet, the first paragraph of the pre­
amble is automatically styled as a lead paragraph. To disable this behavior, assign any role to the
first paragraph.

Preamble and Lead Style | 125

Example 97. Disabling the automatic lead paragraph styling

[.normal]
This is a normal paragraph, regardless of its position in the document.

The presence of the custom role (normal) informs the CSS not to style it as a lead paragraph.

Paragraph Alignment
AsciiDoc provides built-in roles to align the text of a paragraph. The name of the role follows the
pattern text-<alignment>, where <alignment> is one of left, center, right, or justify (e.g., text-center).

In Example 98, the paragraph is assigned the text-center role in an attribute list.

Example 98. Assign text-center to a paragraph

[.text-center]
This text is centered, so it must be important.

These built-in text alignment roles may not be honored by all converters. Though, you can expect
them to be supported when the output format is either HTML or PDF.

126 | Paragraph Alignment

Discrete Headings
A discrete heading is declared and styled in a manner similar to that of a section title, but:

• it’s not part of the section hierarchy,

• it can be nested in other blocks,

• it cannot have any child blocks,

• it’s not included in the table of contents.

In other words, it’s a unique block element that looks like a section title, but is not an offshoot of a
section title.

The discrete style effectively demotes the section title to a normal heading. Discrete headings are
the closest match to headings in other markup languages such as Markdown.

To make a discrete heading, add the discrete attribute to any section title. Here’s an example of a
discrete heading in use.

**** ①
Discrete headings are useful for making headings inside of other blocks, like this
sidebar.

[discrete] ②
== Discrete Heading ③

Discrete headings can be used where sections are not permitted.

① A delimiter line that indicates the start of a sidebar block.

② Set the discrete attribute above the section title to demote it to a discrete heading.

③ The discrete heading is designated by one to six equal signs, just like a regular section title.

Alternately, you may use the float attribute to identify a discrete heading. In this context, the term
“float” does not refer to a layout. Rather, it means not bound to the section hierarchy. The term
comes from an older version of AsciiDoc, in which discrete headings were called Floating Titles.
DocBook refers to a discrete heading as a bridgehead, or free-floating heading.

Discrete Headings | 127

Breaks

Thematic breaks
A line with three single quotation marks (i.e., '''), shown in Example 99, is a special macro that
inserts a thematic break (aka horizontal rule). Like other block forms, the line must be offset by a
preceding paragraph by at least one empty line.

Example 99. Thematic break syntax

'''

The result of Example 99 is displayed below.

Markdown-style thematic breaks

Asciidoctor recognizes Markdown thematic breaks. The motivation for this support is to ease
migration of Markdown documents to AsciiDoc documents.

To avoid conflicts with AsciiDoc’s block delimiter syntax, only 3 repeating characters (- or *) are
recognized. As with Markdown, spaces between the characters is optional.

Example 100. Markdown-style thematic break syntax

- - -

* * *

Page breaks
A line with three less-than characters (i.e., <<<), shown in Example 101, is a special macro that
serves as a hint to the converter to insert a page break. Like other block forms, the line must be off­
set by a preceding paragraph by at least one empty line.

Example 101. Page break syntax

<<<

A page break is only relevant for page-oriented / printable output formats such as DocBook, PDF,

128 | Thematic breaks

and HTML in print mode.

If the page break macro falls at the top of an empty page, it will be ignored. This behavior can be
overridden by setting the always option on the macro as shown in Example 102.

Example 102. Forced page break

[%always]
<<<

Some converters support additional options on the page break macro. For example, Asciidoctor PDF
allows the page layout of the new page to be specified.

Example 103. With page layout

[page-layout=landscape]
<<<

If a converter supports columns, the page break can be converted into a column break by the addi­
tion of the column role.

Example 104. Column break

left column

[.column]
<<<

right column

When columns are not enabled or supported, the column break is expected to act as a page break.

Page breaks | 129

Text Formatting and Punctuation
Just as we emphasize certain words and phrases when we speak, we emphasize words and phrases
in text using formatting and punctuation. AsciiDoc provides an assortment of formatting marks for
applying visual emphasis and typographic punctuation to your document. You can build on these
basic formatting marks using built-in and user-defined roles. This page covers the formatting
marks that AsciiDoc provides and the rules for applying and customizing them.

Formatting terms and concepts

Formatting marks and pairs

A formatting mark is a symbolic character, such as *, _, or ~, that indicates the inline style you
want the AsciiDoc converter to apply to the text. Formatting marks come in pairs.

A formatting pair consists of an identical opening mark and closing mark that encloses the text
you want to style. The formatted text (i.e., the text enclosed by a formatting pair) can span multiple,
contiguous lines.

The opening mark specifies where you want the style to start. The closing mark specifies where
you want the style to end.

Formatting pairs can be nested, but they cannot be overlapped. If the pairs are overlapped, the
behavior is unspecified and the AsciiDoc processor may produce malformed output.

A formatting pair is defined as either constrained or unconstrained, depending on where it’s
allowed to be applied. An unconstrained pair can be applied anywhere, whereas the application of
a constrained pair is more restrictive.

Constrained formatting pair

When a space-like character directly precedes the text to format, and a space-like character or
punctuation mark (,, ;, ", ., ?, or !) directly follows the text, and the text does not start or end with a
space-like character, a constrained formatting pair can be used. A constrained pair uses a single
opening mark and a single closing mark to enclose the text to be styled (e.g., *strong*).

For example, you use this form to format a word that stands alone,

That is *strong* stuff!

to format a sequence of words,

That is *really strong* stuff!

or to format a word adjacent to punctuation, like an exclamation mark.

130 | Formatting terms and concepts

This stuff is *strong*!

As you can see, the constrained pair offers a more succinct markup at the tradeoff of having more
limited (constrained) use. However, it should suffice in most cases, so the abbreviated markup is a
benefit. You can think of a constrained pair as being a weaker markup hint than an unconstrained
pair.

Unconstrained formatting pair

An unconstrained formatting pair can be used anywhere in the text. When the conditions are not
met for a constrained formatting pair, the situation calls for an unconstrained formatting pair. An
unconstrained pair consists of a double opening mark and a double closing mark that encloses the
text to be styled (e.g., Sara**h**).

For example, you’d use an unconstrained pair to format one or more letters in a word.

The man page, short for **man**ual page, is a form of software documentation.

The unconstrained pair provides a more brute force approach to formatting at the tradeoff of being
more verbose. You’ll typically switch to an unconstrained pair when a constrained pair isn’t suffi­
cient, or when you are writing in a CJK like such as Chinese. See When should I use an uncon­
strained pair? for more examples of when to use an unconstrained pair.

Inline text and punctuation styles
AsciiDoc provides six inline text styles and one punctuation style that are applied solely with for­
matting marks.

Bold (type: strong)

Text that is bold will stand out against the regular, surrounding text due to the application of a
thicker and/or darker font. Bold is useful when the text needs to catch the attention of a person
visually scanning a page. The formatting mark for bold is an asterisk (*).

Italic (type: emphasis)

Text is often italicized in order to stress a word or phrase, quote a speaker, or introduce a term.
Italic type slants slightly to the right, and depending on the font, may have cursive swashes and
flourishes. The formatting mark for italic is an underscore (_).

Monospace (type: monospaced)

Technical content often requires text to be styled in a way that indicates a command or source
code. Such text is usually emphasized using a fixed-width (i.e., monospace) font. The formatting
mark for monospace is a backtick (`).

Highlight (type: mark)

Another way to draw attention to text is to highlight it. This semantic style is used for reference
or notation purposes, or to mark the importance of a key subject or point. The formatting mark

Inline text and punctuation styles | 131

for highlight is a hash (#).

Styled phrase (type: unquoted)

Adding a role to a span of text that uses the highlight formatting mark (#) converts to generic
phrase that can be styled. AsciiDoc defines several built-in roles that you can use to style text,
and the style/theming system of the converter can allow you to define styles for a custom role.

Subscript and superscript (type: subscript/superscript)

Subscript and superscript text is common in mathematical expressions and chemical formulas.
The formatting mark for subscript is a tilde (~). The formatting mark for superscript is a caret (^).

Curved quotation marks and apostrophes (type: double/single)

By default, the AsciiDoc processor outputs straight quotation marks and apostrophes. They can
be changed to curved by adding backticks (`) as a formatting hint.

Quotes substitution
When the AsciiDoc processor encounters text enclosed by designated formatting marks, those
marks are replaced by the start and end tags of the corresponding HTML or XML element, depend­
ing on your backend, during the quotes substitution step. You can control when inline formatting is
applied to inline text, macros, or blocks with the quotes substitution value.

Bold
Text that is marked up as bold will stand out against the regular, surrounding text due to the appli­
cation of a thicker and/or darker font. Bold is useful when the text needs to catch the attention of a
site visitor quickly scanning a page.

The bold presentation of text maps to the formatted text type known as strong in the AsciiDoc lan­
guage.

Bold syntax

You can mark a word or phrase as bold by enclosing it in a single pair of asterisks (e.g., *word*) (con­
strained). You can mark bounded characters (i.e., characters within a word) as bold by enclosing
them in a pair of double asterisks (e.g., char**act**ers) (unconstrained).

Example 105. Bold inline formatting

A bold *word*, and a bold *phrase of text*.

Bold c**hara**cter**s** within a word.

You don’t need to use double asterisks when an entire word or phrase marked as bold is directly
followed by a common punctuation mark, such as ;, ", and !.

The results of Example 105 are displayed below.

132 | Quotes substitution

A bold word, and a bold phrase of text.

Bold characters within a word.

Mixing bold with other formatting

You can add multiple emphasis styles to bold text as long as the syntax is placed in the correct
order.

Example 106. Order of inline formatting syntax

`*_monospace bold italic phrase_*` & ``**__char__**``acter``**__s__**``

Monospace syntax (`) must be the outermost formatting pair (i.e., outside the bold formatting pair).
Italic syntax (_) is always the innermost formatting pair.

The results of Example 106 are displayed below.

monospace bold italic phrase & characters

Italic
Text is often italicized in order to stress a word or phrase, quote a speaker, or introduce a term.
Italic text slants slightly to the right, and depending on the font, may have cursive swashes and
flourishes.

The italic presentation of text maps to the formatted text type known as emphasis in the AsciiDoc
language.

Italic syntax

You can emphasize (aka italicize) a word or phrase by enclosing it in a single pair of underscores
(e.g., _word_) (constrained). You can emphasize bounded characters (i.e., characters within a word)
by enclosing them in a pair of double underscores (e.g., char__act__ers) (unconstrained).

Example 107. Italic inline formatting

An italic _word_, and an italic _phrase of text_.

Italic c__hara__cter__s__ within a word.

You don’t need to use double underscores when an entire word or phrase marked as italic is
directly followed by a common punctuation mark, such as ;, ", and !.

The result of Example 107 is rendered below.

Italic | 133

An italic word, and an italic phrase of text.

Italic characters within a word.

Mixing italic with other formatting

You can add multiple emphasis styles to italic text as long as the syntax is placed in the correct
order.

Example 108. Order of inline formatting syntax

`*_monospace bold italic phrase_*` & ``**__char__**``acter``**__s__**``

Monospace syntax (`) must be the outermost formatting pair. Bold syntax (*) must be outside the
italics formatting pair. Italic syntax is always the innermost formatting pair.

The result of Example 108 is rendered below.

monospace bold italic phrase & characters

Monospace
In AsciiDoc, a span of text enclosed in a single pair of backticks (`) is displayed using a fixed-width
(i.e., monospaced) font. Monospace text formatting is typically used to represent text shown in com­
puter terminals or code editors (often referred to as a codespan).

The monospace presentation of text maps to the formatted text type known as monospaced in the
AsciiDoc language.

Constrained

Here’s an example:

Example 109. Constrained monospace syntax

"`Wait!`" Indigo plucked a small vial from her desk's top drawer
and held it toward us.
The vial's label read: `E=mc^2^`; the `E` represents _energy_,
but also pure _genius!_

The result of Example 109 is rendered below.

“Wait!” Indigo plucked a small vial from her desk’s top drawer and held it toward us. The vial’s
label read: E=mc2; the E represents energy, but also pure genius!

134 | Monospace

Unconstrained

As with other types of text formatting, if the text is bounded by word characters on either side, it
must be enclosed in a double pair of backtick characters (``) in order for the formatting to be
applied.

Here’s an example:

The command will re``link`` all packages.

Mixed Formatting

Monospaced text can also be formatted in bold or italic or both, as long as the markup pairs are
entered in the right order. The monospace markup must be the outermost formatting mark, then
the bold marks, then the italic marks.

Example 110. Order of inline formatting syntax

`*_monospaced bold italic_*`

The result of Example 110 is rendered below.

monospaced bold italic

Literal Monospace

To learn how to make monospace text that’s not otherwise formatted, see Literal Monospace.

Literal Monospace
Unlike other markup languages, monospaced text in AsciiDoc is not synonymous with literal text.
Instead, it gets interpreted just like normal text. In other words, it’s subject to all text substitutions
by default.

This might be surprising at first. But there’s good reason for this difference. In AsciiDoc, you can
take advantage of attribute references and inline macros inside of a monospaced text span. The
drawback, of course, is that you have to be careful to escape these special characters if you intend
to output them without special formatting (i.e., as literal text).

One way to prevent the processor from interpreting special characters in monospaced text is to
escape them using backslash characters, just as you would with normal text. However, escaping
individual occurrences that way can be tedious. That’s why AsciiDoc offers a special type of mono­
space formatting called the literal monospace.

To make a true literal codespan in AsciiDoc, you must enclose the monospaced text in a
passthrough. Rather than using a single pair of backtick characters, you’ll use the combination of

Literal Monospace | 135

the backtick and plus characters, where the plus characters fall on the inside of the backtick char­
acters (e.g., `+text+`). The plus characters are a shorthand for the pass:c[] enclosure.

Example 111 contains literal, monospaced text.

Example 111. Literal monospace syntax

You can reference the value of a document attribute using
the syntax `+{name}+`, where `name` is the attribute name.

This shorthand syntax can accommodate most of the literal monospace cases. The main exception
is when the text itself contains plus characters. To avoid confusing the processor, you’ll need to
switch to using the more formal passthrough macro to handle these cases.

Example 112 shows literal, monospaced text that contains plus characters.

Example 112. Literal monospace syntax with + characters

`pass:[++]` is the increment operator in C.

Passthroughs are a general purpose utility in AsciiDoc. You can learn about the various passthrough
options in Inline Passthroughs.

Text Span and Built-in Roles
Instead of applying explicit formatting to text, you can enclose a span of a text in a non-formatting
element. This type of markup is referred to as a text span (formerly known as unquoted text). It’s
purpose is to allow attributes such as role and ID to be applied to unformatted text. Though those
attributes can still be used to apply styles to the text.

Text span syntax

When text is enclosed in a pair of single or double hash symbols (#) and has at least one role, the
role(s) will be applied to that text without adding any other implicit formatting.


If no attrlist is present, the formatting pair will be interpreted as highlighted text
instead.

Example 113. Text span syntax

The text [.underline]#underline me# is underlined.

When Example 113 is converted to HTML, it translates into the following output.

Example 114. Text span HTML output

The text underline me is underlined.

136 | Text Span and Built-in Roles

As you can see, it’s up to the stylesheet to provide styles for this element. Typically, this means you’ll
need to define custom inline styles that map to the corresponding class. In this case, since underline
is a built-in role, the style is provided for you.

Built-in roles for text

The AsciiDoc language provides a handful of built-in roles you can use to provide formatting hints
for the text. While these roles are often used with a text span, they can also be used with any other
formatted text for which a role is accepted.


Not all converters recognize these roles, though you can expect them to at least be
supported by the HTML converter.

These roles are as follows:

underline

Applies an underline decoration to the span of text.

overline

Applies an overline decoration to the span of text.

line-through

Applies a line-through (aka strikethrough) decoration to the span of text.

nobreak

Disables words within the span of text from being broken.

nowrap

Prevents the span of text from wrapping at all.

pre-wrap

Prevents sequences of space and space-like characters from being collapsed (i.e., all spaces are
preserved).

Deprecated roles

There are several built-in roles that were once supported in AsciiDoc, but have since been depre­
cated. These roles include big, small, named colors (e.g., aqua), and named background colors (e.g.,
aqua-background). You should create your own semantic roles in place of these deprecated roles.

Highlight

Highlight syntax

When text is enclosed in a pair of single or double hash symbols (#), and no role is assigned to it, the
text will be rendered as highlighted (aka marked) text for notation purposes.

Highlight | 137

Example 115. Highlighted style syntax

Mark my words, #automation is essential#.

When Example 115 is converted to HTML, it translates into the following output.

Example 116. Highlighted text HTML output

<mark>mark element</mark>

The result of Example 115 is rendered below.

Mark my words, automation is essential .

Quotation Marks and Apostrophes
This page describes how to insert curved quotation marks and apostrophes using the AsciiDoc syn­
tax. It covers the shorthand syntax, the limitations of that syntax, and when it’s necessary to input
these characters directly.

Single and double quotation mark syntax

AsciiDoc does not assign special meaning to single or double quotation marks when used as con­
strained formatting pairs (e.g., around a word or phrase). In this case, the ' and " characters are
taken to be straight quotation marks (also known as dumb, vertical, or typewriter quotation
marks). When an AsciiDoc processor encounters straight quotation marks in this context, it outputs
them as entered.

Example 117. Single and double straight quotation marks syntax

In Ruby, '\n' represents a backslash followed by the letter n.
Single quotes prevent escape sequences from being interpreted.
In contrast, "\n" represents a newline.

The result of Example 117 is rendered below.

In Ruby, '\n' represents a backslash followed by the letter n. Single quotes prevent escape
sequences from being interpreted. In contrast, "\n" represents a newline.

You can instruct the AsciiDoc processor to output curved quotation marks (also known as smart,
curly, or typographic quotation marks) by adding a repurposed constrained monospace formatting
pair (i.e., a pair of backticks, `) directly inside the pair of quotation marks. The combination of these
two formatting pairs forms a new constrained formatting pair for producing single and double
curved quotation marks.

138 | Quotation Marks and Apostrophes

Example 118. Single and double curved quotation marks syntax

"`What kind of charm?`" Lazarus asked.
"`An odoriferous one or a mineral one?`" ①

Kizmet shrugged.
"`The note from Olaf's desk says '`wormwood and licorice,`'
but these could be normal groceries for werewolves.`" ②

① To output double curved quotes, enclose a word or phrase in a pair of double quotes (") and a
pair of backticks (`).

② To output single curved quotes, enclose a word or phrase in a pair of single quotes (') and a pair
of backticks (`). In this example, the phrase wormwood and licorice should be enclosed in curved
single quotes when the document is rendered.

The result of Example 118 is rendered below.

“What kind of charm?” Lazarus asked. “An odoriferous one or a mineral one?”

Kizmet shrugged. “The note from Olaf’s desk says ‘wormwood and licorice,’ but these could be
normal groceries for werewolves.”

There’s no unconstrained equivalent for producing double and single curved quotation marks. In
that case, it’s necessary to input the curved quotation marks directly using the characters ‘ , ’ , “ , and
” .

Apostrophe syntax

When entered using the ' key, the AsciiDoc processor translates a straight apostrophe directly pre­
ceded and followed by a word character, such as in contractions and possessive singular forms, as a
curved apostrophe. This partial support for smart typography without any special syntax is a legacy
inherited from AsciiDoc.py.

Example 119. Curved apostrophe replacement

Olaf's desk was a mess.

The result of Example 119 is rendered below.

Olaf’s desk was a mess.

If you don’t want a straight apostrophe that’s bounded by two word characters to be rendered as a
curved apostrophe, escape it by preceding it with a backslash (\).

Quotation Marks and Apostrophes | 139

Example 120. Escape an apostrophe

Olaf\'s desk ...

The result of Example 120 is rendered below.

Olaf's desk …

An apostrophe directly bounded by two word characters is processed during the replacements sub­
stitution phase, not the inline formatting (quotes) phase. To learn about additional ways to prevent
the replacements substitution, see Escape and Prevent Substitutions and Inline Passthroughs.

An apostrophe directly followed by a space or punctuation, such as the possessive plural form, is
not curved by default. To render a curved apostrophe when not bounded by two word characters,
mark it as you would the second half of single curved quote (i.e., `'). This syntax for a curved apos­
trophe is effectively unconstrained.

Example 121. Curved apostrophe syntax

Olaf had been with the company since the `'00s.
His desk overflowed with heaps of paper, apple cores and squeaky toys.
We couldn't find Olaf's keyboard.
The state of his desk was replicated, in triplicate, across all of
the werewolves`' desks.

In the rendered output for Example 121 below, notice that the plural possessive apostrophe, seen
trailing werewolves, is curved, as is the omission apostrophe before 00s.

Olaf had been with the company since the ’00s. His desk overflowed with heaps of paper, apple
cores and squeaky toys. We couldn’t find Olaf’s keyboard. The state of his desk was replicated,
in triplicate, across all of the werewolves’ desks.

Possessive monospace

In order to make a possessive, monospaced phrase, you need to switch to unconstrained formatting
followed by an explicit typographic apostrophe.

Example 122. Use a curved apostrophe with monospace in a word

``npm```'s job is to manage the dependencies for your application.

A ``std::vector```'s size is the number of items it contains.

The result of Example 122 is rendered below.

140 | Quotation Marks and Apostrophes

npm’s job is to manage the dependencies for your application.

A std::vector’s size is the number of items it contains.

You’ll need to use a similar syntax when the last (or only) word in the monospace phrase ends in an
“s” (i.e., the plural possessive form).

Example 123. Use a curved apostrophe with monospace at the end of a word

This ``class```' static methods make it easy to operate on files and directories.

The result of Example 123 is below. The word class is rendered in monospace with a curved apos­
trophe at the end of it.

This class’ static methods make it easy to operate on files and directories.

You can get the same result by inserting a typographic apostrophe immediately following a con­
strained formatting pair. In this case, you’re able to leverage the fact that a typographic apostrophe
is a punctuation character to avoid the need to resort to unconstrained formatting.

The `class`’ static methods make it easy to operate on files and directories.

As you can see, it’s often simpler to input the curved apostrophe directly using the character ’ . The
shorthand syntax AsciiDoc provides is only meant as a convenience.

Subscript and Superscript
Subscript and superscript text is common in mathematical expressions and chemical formulas.
When rendered, the size of subscripted and superscripted text is reduced. Subscripted text is placed
at the baseline and superscripted text above the baseline. The size and precise placement of the text
depends on the font and other stylesheet parameters applied to the converted document.

Subscript and superscript syntax

Text is rendered as subscript (below the baseline) when you enclose it in a pair of tildes (~). Text is
rendered as superscript (above the baseline) when you enclose it in a pair of carets (^)

Superscript and subscript have unique boundary constraints in AsciiDoc that are neither con­
strained nor unconstrained. Rather, they are unconstrained with the key restriction that the text
must be continuous. (It may not contain spaces). This restriction is in place to avoid unexpected
behavior where ~ and ^ have meaning in other contexts. It’s a tradeoff to have a more predictable
syntax.

Subscript

One tilde (~) on either side of a continuous run of text makes it subscript.

Subscript and Superscript | 141

Superscript

One caret (^) on either side of a continuous run of text makes it superscript.

Example 124. Subscript and superscript syntax

"`Well the H~2~O formula written on their whiteboard could be part
of a shopping list, but I don't think the local bodega sells
E=mc^2^,`" Lazarus replied.

The result of Example 124 is rendered below.

“Well the H2O formula written on their whiteboard could be part of a shopping list, but I don’t
think the local bodega sells E=mc2,” Lazarus replied.

If you need to include spaces in the superscript or subscript text, you must use the attribute refer­
ence {sp} in place of the space character.

Example 125. Superscript syntax that contains spaces

The deepest body of water is Deep Creek Lake.^[citation{sp}needed]^

To write text that makes use of more complex variations and combinations of superscript and sub­
script, such as in equations and formulas, you’re encourages to use the stem block or inline macro.

Using Custom Inline Styles

Custom style syntax

You can assign built-in roles (e.g., big or underline) or custom roles (e.g., term or required) to any for­
matted text. These roles, in turn, can be used to apply styles to the text. In HTML, this is done by
mapping styles to the role in the stylesheet using a CSS class selector.

Example 126. Text with built-in role

Do werewolves believe in [.small]#small print#? ①

[.big]##O##nce upon an infinite loop.

1. The first positional attribute is treated as a role. You can assign it a custom or built-in CSS class.

The results of Example 126 are displayed below.

Do werewolves believe in small print?

Once upon an infinite loop.

142 | Using Custom Inline Styles

Although built-in roles such as big and small are supported by most AsciiDoc processors, it’s really
better to define your own semantic role names and map styles to them accordingly.

Here’s how you can assign a custom role to text so you can apply your own styles to it.

Example 127. Text with custom role

Type the word [.userinput]#asciidoctor# into the search bar.

When Example 127 is converted to HTML, the word asciidoctor is enclosed in a element and
the role userinput is used as the element’s CSS class.

Example 128. HTML output

asciidoctor

The following example shows how you can assign styles to elements that have this role using a CSS
class selector.

.userinput {
 font-family: monospace;
 font-size: 1.1em;
 line-height: calc(1 / 1.1);
}

Troubleshoot Unconstrained Formatting Pairs
An unconstrained formatting pair is often used to format just one or a few characters in a word.

When should I use unconstrained formatting?

Consider the following questions:

1. Is there a letter, number, or underscore directly outside the opening or closing formatting
marks?

2. Is there a colon, semicolon, or closing curly bracket directly before the opening formatting
mark?

3. Is there a space directly inside of a formatting mark?

4. Are you writing in a CJK langauge such as Chinese?

If you answered “yes” to any of these questions, you need to use an unconstrained pair.

To help you determine whether a particular syntax pattern requires an unconstrained pair versus a
constrained pair, consider the following scenarios:

Constrained or Unconstrained?

Troubleshoot Unconstrained Formatting Pairs | 143

AsciiDoc Result Formatting Pair Reason

Sara__h__ Sarah Unconstrained The letter a is directly
adjacent to the opening
mark.

Bold Bold Unconstrained The o is directly adja­
cent to the closing
mark.

–**2016** –2016 Unconstrained The ; is directly adja­
cent to the opening
mark.

** bold ** bold Unconstrained There are spaces
directly inside the for­
matting marks.

我喜欢**大**狗 我喜欢大狗 Unconstrained There are CJK charac­
ters directly outside the
formatting marks.

2016– 2016– Constrained The adjacent & is not a
letter, number, under­
score, colon, or semi­
colon.

9-to-*5* 9-to-5 Constrained The adjacent hyphen is
not a letter, number,
underscore, colon, or
semicolon.

Unconstrained pair edge cases

There are cases when it might seem logical to use a constrained pair, but an unconstrained pair is
required. Substitutions may be applied by the parser before getting to the formatting marks, in
which case the characters adjacent to those marks may not be what you see in the original source.

One such example is enclosing a monospace phrase inside curved quotation marks, such as “end
points”.

You might start with the following syntax:

"`end points`"

That only gives you “end points”. The backticks contribute to making the curved quotation marks,
but the word isn’t rendered in monospace.

Adding another pair of backticks isn’t enough either.

"``end points``"

144 | Troubleshoot Unconstrained Formatting Pairs

The parser ignores the inner pair of backticks and interprets them as literal characters, rendering
the phrase as “`end points`”.

You have to use an unconstrained pair of monospace formatting marks to render the phrase in
monospace and a constrained pair of backticks to render the quotation marks as curved. That’s
three pairs of backticks in total.

Example 129. A monospace phrase inside curved quotation marks

"```end points```"

If, instead, you wanted to surround the monospace phrase with typewriter quotation marks, such
as "end points", then you need to interrupt the curved quotation marks by applying a role to the
monospace phrase or escaping the typewriter quote. For example:

Example 130. A monospace phrase inside typewriter quotation marks

"[.code]``end points``" or \"``end points``"

Another example is a possessive, monospace phrase that ends in an “s”. In this case, you must
switch the monospace phrase to unconstrained formatting.

The ``class```' static methods make it easy to operate
on files and directories.

Rendered possessive, monospace phrase

The class’ static methods make it easy to operate on files and directories.

Alternately, you could encode the curved apostrophe directly in the AsciiDoc source to get the same
result.

The `class`’ static methods make it easy to operate on files and directories.

This situation is expected to improve in the future when the AsciiDoc language switches to using a
parsing expression grammar for inline formatting instead of the current regular expression-based
strategy. For details, follow Asciidoctor issue #61.

Escape unconstrained formatting marks

Since unconstrained formatting marks are meant to match anywhere in the text, context free, that
means you may catch them formatting text that you don’t want styled sometimes. Admittedly, these
symbols are a bit tricky to type literally when the content calls for it. But being able to do so is just a
matter of knowing the tricks, which this section will cover.

Let’s assume you are typing the following two lines:

Troubleshoot Unconstrained Formatting Pairs | 145

https://github.com/asciidoctor/asciidoctor/issues/61

The __kernel qualifier can be used with the __attribute__ keyword...

#`CB###2`# and #`CB###3`#

In the first sentence, you aren’t looking for any text formatting, but you’re certainly going to get it.
The processor will interpret the double underscore in front of __kernel as an unconstrained format­
ting mark. In the second sentence, you might expect CB###2 and CB###3 to be highlighted and dis­
played using a monospace font. However, what you get is a scrambled mess. The mix of constrained
and unconstrained formatting marks in the line is ambiguous.

There are two reliable solutions for escaping unconstrained formatting marks:

• use an attribute reference to insert the unconstrained formatting mark verbatim, or

• wrap the text you don’t want formatted in an inline passthrough.

The attribute reference is preferred because it’s the easiest to read:

:scores: __
:hash3: ###

The {scores}kernel qualifier can be used with the {scores}attribute{scores} keyword...

#`CB{hash3}2`# and #`CB{hash3}3`#

This works because attribute expansion is performed after text formatting (i.e., quotes substitution)
in the normal substitution order.

Here’s how you’d write these lines using the inline single plus macro to escape the unconstrained
formatting marks instead:

The +__kernel+ qualifier can be used with the +__attribute__+ keyword...

#`+CB###2+`# and #`+CB###3+`#

Notice the addition of the plus symbols. Everything between the plus symbols is escaped from inter­
polation (attribute references, text formatting, etc.). However, the text still receives proper output
escaping for HTML special characters (e.g., < becomes <).

The enclosure `+TEXT+` (text enclosed in pluses surrounded by backticks) is a special formatting
combination in AsciiDoc. It means to format TEXT as monospace, but don’t interpolate formatting
marks or attribute references in TEXT. It’s roughly equivalent to Markdown’s backticks. Since Asci­
iDoc offers more advanced formatting, the double enclosure is necessary.

146 | Troubleshoot Unconstrained Formatting Pairs

Lists

Unordered Lists
You can make unordered lists in AsciiDoc by starting lines with a designated marker. An unordered
list is a list with items prefixed with symbol, such as a disc (aka bullet).

AsciiDoc builds on the well-established convention of using either an asterisk or hyphen to identify
a list item. Adjacent list items are joined into a single list. Unordered lists can be nested by varying
the marker character or length (asterisk only). List items may contain attached blocks. They can
also be interleaved with other types of lists.

Basic unordered list

In the example below, each list item is marked using an asterisk (*), the AsciiDoc syntax specifying
an unordered list item.

* Edgar Allan Poe
* Sheri S. Tepper
* Bill Bryson

A list item’s first line of text must be offset from the marker (*) by at least one space. Empty lines
are required before and after a list. Additionally, empty lines are permitted, but not required,
between list items.

Rendered unordered list

• Edgar Allan Poe

• Sheri S. Tepper

• Bill Bryson

You can add a title to a list by prefixing the title with a period (.).

.Kizmet's Favorite Authors
* Edgar Allan Poe
* Sheri S. Tepper
* Bill Bryson

Rendered unordered list with a title

Kizmet’s Favorite Authors

• Edgar Allan Poe

• Sheri S. Tepper

• Bill Bryson

Unordered Lists | 147

Was your instinct to use a hyphen (-) instead of an asterisk to mark list items? Guess what? That
works too!

- Edgar Allan Poe
- Sheri S. Tepper
- Bill Bryson

You should reserve the hyphen for lists that only have a single level because the hyphen marker (-)
doesn’t work for nested lists. Now that we’ve mentioned nested lists, let’s go to the next section and
learn how to create lists with multiple levels.

Forcing lists apart

If you have adjacent lists, they have the tendency to want to fuse together. To force lists apart,
insert a line comment (//) surrounded by empty lines between the two lists. Here’s an exam­
ple, where the - text in the line comment indicates the line serves as an “end of list” marker:

* Apples
* Oranges

//-

* Walnuts
* Almonds

This technique works for all list types. See Separating Lists for more details.

Nested unordered list

To nest an item, just add another asterisk (*) to the marker. Continue doing this for each subsequent
level.

.Possible DefOps manual locations
* West wood maze
** Maze heart
*** Reflection pool
** Secret exit
* Untracked file in git repository

Rendered nested, unordered list

Possible DefOps manual locations

• West wood maze

◦ Maze heart

148 | Unordered Lists

▪ Reflection pool

◦ Secret exit

• Untracked file in git repository

If you prefer, you can indent the marker an arbitrary number of spaces from the left margin. The
indentation is not significant and may aid in visualizing the nesting level.

You can nest unordered lists to any depth. Keep in mind, however, that some interfaces will begin
flattening lists after a certain depth. For instance, GitHub starts flattening list after 10 levels of nest­
ing.

* Level 1 list item
** Level 2 list item
*** Level 3 list item
**** Level 4 list item
***** Level 5 list item
****** etc.
* Level 1 list item

Unordered lists can be nested to any depth

• Level 1 list item

◦ Level 2 list item

▪ Level 3 list item

▪ Level 4 list item

▪ Level 5 list item

▪ etc.

• Level 1 list item

Determining list depth

While it would seem as though the number of asterisks represents the nesting level, that’s not how
depth is determined. A new level is created for each unique marker encountered. For example, you
can create a second level using the hyphen marker instead of two asterisks.

Example 131. Using hyphen to mark the second level is not recommended

* Level 1 list item
- Level 2 list item
* Level 1 list item

However, it’s much more intuitive to follow the convention that the marker length (i.e., number of
asterisks) equals the level of nesting. The hyphen should only be used as the marker for the first

Unordered Lists | 149

level.

marker length = level of nesting

After all, we’re shooting for plain text markup that is readable as is.

Markers

When rendered, an unordered list item is designated by a leading marker (bullet) (not to be con­
fused with the marker used to define the list). This marker can be controlled using the list style. If
no marker is specified, a default marker will be selected by the renderer.

Default markers

By default, AsciiDoc assumes that the first three levels of an unordered list will be styled using the
markers disc, circle, and squared when rendered. Consider the following list:

* disc
** circle
*** square

Default alternating markers for nested lists

• disc

◦ circle

▪ square

Observe that the marker for the first level is a disc (filled circle), the second level is a circle (out­
line), and the third level is a square (filled). The AsciiDoc processor does not specify these markers
explicitly in the model or converted output. Rather, these defaults are added by the renderer (e.g.,
CSS), adhering to a convention established by HTML.

Beyond the third level of nesting, the marker choice is not specified. Typically, the renderer will
continue to use the square marker, as shown in an earlier example.

Custom markers

AsciiDoc offers numerous marker styles for lists. The list marker can be specified using the list’s
block style.

The unordered list marker can be set using any of the following block styles:

• square

• circle

• disc

• none or no-bullet (indented, but no bullet)

150 | Unordered Lists

• unstyled (no indentation or bullet) (not supported in DocBook output)

 These styles are supported by the default Asciidoctor stylesheet.

When present, the style name is assigned to the unordered list element as follows:

For HTML

the style name is assigned to the class attribute on the element.

For DocBook

the style name is assigned to the mark attribute on the <itemizedlist> element.

Here’s an unordered list that has square markers:

[square]
* one
* two
* three

A list with square markers

▪ one

▪ two

▪ three

Once the list style is set, that style is used for all nested lists until it is set again. The assumption is
that it’s no longer possible to infer the alternation, so it stops. The inherited style is not specified in
the model, but rather applied by the renderer (e.g., CSS). For example, if we set the list style to circle
on the top-level list, it will be used for all levels.

[circle]
* circles
** all
*** the
**** way
***** down

The list style is inherited once set

◦ circles

◦ all

▪ the

▪ way

▪ down

Unordered Lists | 151

The inherited style can be set or reset at any level.

[square]
* squares
** up top
[circle]
*** circles
**** down below

The list style can be reset

▪ squares

◦ up top

◦ circles

▪ down below

Ordered Lists

Basic ordered list

Sometimes, we need to number the items in a list. Instinct might tell you to prefix each item with a
number, like in this next list:

1. Protons
2. Electrons
3. Neutrons

The above works, but since the numbering is obvious, the AsciiDoc processor will insert the num­
bers for you if you omit them:

. Protons

. Electrons

. Neutrons

1. Protons

2. Electrons

3. Neutrons

If you number the ordered list explicitly, you have to manually keep the list numerals sequential.
Otherwise, you will get a warning. This differs from other lightweight markup languages. But
there’s a reason for it.

152 | Ordered Lists

Using explicit numbering is one way to adjust the numbering offset of a list (only supported in Asci­
idoctor 2.1.0 or better). For instance, you can type:

4. Step four
5. Step five
6. Step six

However, there’s a simpler way to accomplish the same result without the manual effort. You can
use the start attribute on the list to define the number at which you want the numerals to start.

[start=4]
. Step four
. Step five
. Step six

The start value is always a positive integer value, even when using a different numeration style
such as loweralpha.

When not to use the start attribute

When an ordered list item contains block content—such as an image, source block, or table—
you may observe that the number of the next item in the list resets to 1. In fact, what’s hap­
pened is that a new list has been started where the number resets due to a missing list contin­
uation.

In these cases, you should not resort to using the start attribute to fix the numbering. Not
only does that require manual adjustment as items are added to the list, it doesn’t address the
underlying semantics problem, which is what is causing it to be broken. Instead, use a list
continuation between each block element you want to attach to the list item to ensure the list
item is continuous. The list continuation glues the blocks together within a given item and
keeps them at the same level of indentation.

• For details on how to use a list continuation, refer to the Compound List Items page.

• For an example of the list continuation used in an ordered list, see the launch steps in this
.adoc file in GitHub.

• To see how those launch steps look in the final output, see the Launch the Quick Start sec­
tion of the generated deployment guide. The list continuations prevent step 2 from reset­
ting to 1. They also prevent step 5, which is pulled in from a separate AsciiDoc file, from
resetting to 1.

To present list items in reverse order, add the reversed option:

[%reversed]
.Parts of an atom
. Protons

Ordered Lists | 153

https://github.com/aws-quickstart/quickstart-microsoft-sql-fci-fsx/blob/main/docs/partner_editable/deploy_steps.adoc
https://github.com/aws-quickstart/quickstart-microsoft-sql-fci-fsx/blob/main/docs/partner_editable/deploy_steps.adoc
https://aws-quickstart.github.io/quickstart-microsoft-sql-fci-fsx/#_launch_the_quick_start

. Electrons

. Neutrons

Parts of an atom

3. Protons

2. Electrons

1. Neutrons

You can give a list a title by prefixing the line with a dot immediately followed by the text (without
leaving any space after the dot).

Here’s an example of a list with a title:

.Parts of an atom

. Protons

. Electrons

. Neutrons

Parts of an atom

1. Protons

2. Electrons

3. Neutrons

Nested ordered list

You create a nested item by using one or more dots in front of each the item.

. Step 1

. Step 2

.. Step 2a

.. Step 2b

. Step 3

AsciiDoc selects a different number scheme for each level of nesting. Here’s how the previous list
renders:

A nested ordered list

1. Step 1

2. Step 2

a. Step 2a

154 | Ordered Lists

b. Step 2b

3. Step 3



Like with the asterisks in an unordered list, the number of dots in an ordered list
doesn’t represent the nesting level. However, it’s much more intuitive to follow the
convention that the number of dots equals the level of nesting.

of dots = level of nesting

Again, we are shooting for plain text markup that is readable as is.

You can mix and match the three list types, ordered, unordered, and description, within a single
hybrid list. The AsciiDoc syntax tries hard to infer the relationships between the items that are most
intuitive to us humans.

Here’s an example of nesting an unordered list inside of an ordered list:

. Linux
* Fedora
* Ubuntu
* Slackware
. BSD
* FreeBSD
* NetBSD

1. Linux

◦ Fedora

◦ Ubuntu

◦ Slackware

2. BSD

◦ FreeBSD

◦ NetBSD

You can spread the items out and indent the nested lists if that makes it more readable for you:

. Linux

 * Fedora
 * Ubuntu
 * Slackware

. BSD

Ordered Lists | 155

 * FreeBSD
 * NetBSD

The description list page demonstrates how to combine all three list types.

Number styles

For ordered lists, AsciiDoc supports the numeration styles such as lowergreek and decimal-leading-
zero. The full list of numeration styles that can be applied to an ordered list are as follows:

Block style CSS list-style-type

arabic decimal

decimal [1] decimal-leading-zero

loweralpha lower-alpha

upperalpha upper-alpha

lowerroman lower-roman

upperroman upper-roman

lowergreek [1] lower-greek

[1] These styles are only supported by the HTML converters.

Here are a few examples showing various numeration styles as defined by the block style shown in
the header row:

[arabic] [2] [decimal] [loweralpha] [lowergreek]

1. one

2. two

3. three

01. one

02. two

03. three

a. one

b. two

c. three

α. one

β. two

γ. three

[2] Default numeration if block style is not specified



Custom numeration styles can be implemented using a custom role. Define a new
class selector (e.g., .custom) in your stylesheet that sets the list-style-type prop­
erty to the value of your choice. Then, assign the name of that class as a role on
any list to which you want that numeration applied.

When the role shorthand (.custom) is used on an ordered list, the numeration style is no longer
omitted.

You can override the number scheme for any level by setting its style (the first positional entry in a
block attribute list). You can also set the starting number using the start attribute:

[lowerroman,start=5]
. Five

156 | Ordered Lists

. Six
[loweralpha]
.. a
.. b
.. c
. Seven

v. Five

vi. Six

a. a

b. b

c. c

vii. Seven


The start attribute must be a number, even when using a different numeration
style. For instance, to start an alphabetic list at letter "c", set the numeration style
to loweralpha and the start attribute to 3.

Escaping the list marker

If you have paragraph text that begins with a list marker, but you don’t intend it to be a list item,
you need to escape that marker by using the attribute reference to disrupt the pattern.

Consider the case when the line starts with a P.O. box reference:

P. O. Box

In order to prevent this paragraph from being parsed as an ordered list, you need to replace the
first space with {empty}.

P.{empty}O. Box

Now the paragraph will remain as a paragraph.

In the future, it will be possible to escape an ordered list marker using a backslash, but that is not
currently possible.

Checklists
List items can be marked complete using checklists.

Checklists (i.e., task lists) are unordered lists that have items marked as checked ([*] or [x]) or
unchecked ([]). Here’s an example:

Checklists | 157

Example 132. Checklist syntax

* [*] checked
* [x] also checked
* [] not checked
* normal list item

The result of Example 132 is displayed below.

☑ checked

☑ also checked

☐ not checked

normal list item

 Not all items in the list have to be checklist items, as Example 132 shows.

When checklists are converted to HTML, the checkbox markup is transformed into an HTML check­
box with the appropriate checked state. The data-item-complete attribute on the checkbox is set to 1
if the item is checked, 0 if not. The checkbox is used in place of the item’s bullet.

Since HTML generated from AsciiDoc is typically static, the checkbox is set as disabled to make it
appear as a simple mark. If you want to make the checkbox interactive (i.e., clickable), add the
interactive option to the checklist (shown here using the shorthand syntax for the Options
Attribute):

Example 133. Checklist with interactive checkboxes

[%interactive]
* [*] checked
* [x] also checked
* [] not checked
* normal list item

The result of Example 133 is displayed below.

☑ checked

☑ also checked

☐ not checked

normal list item

Separating Lists
In AsciiDoc, lists items have natural affinity towards one another. If adjacent lines start with the
same list marker, they are joined together into the same list, even if separated by empty lines. If the
adjacent line starts with a different list marker, even if offset by empty lines, it will be placed into a
nested list.

158 | Separating Lists

These rules make it easier to keep list items together in a single list. However, they can present a
challenge if what you want is to create separate lists. Fortunately, there are ways to force a change
to this behavior. The techniques described on this page work for all list types.

Using a line comment

To force lists apart, you can insert a line comment (i.e., //) surrounded by empty lines on either side
between the two lists.

Here’s an example that shows where to place the line comment to separate two adjacent unordered
lists. The - following the line comment prefix is a hint to authors to indicate that the comment line
serves as an “end of list” marker:

* Apples
* Oranges

//-

* Walnuts
* Almonds

This technique works for separating any type of list.

Using a block attribute line

Another way to start a new list is to place a block attribute line (even an empty one) above the sec­
ond list, offset by an empty line.

Here’s an example that shows where to place the block attribute line to separate unordered and
ordered lists that are adjacent.

* Apples
* Oranges

[]
. Wash
. Slice

The preceding empty line is important. If that were not present, the ordered list would still be
nested inside the ordered list. If the second list requires block attributes, you can add them to the
block attribute line.

This technique works for separating any type of list.

Compound List Items
This page covers how to create lists that have compound list items.

Compound List Items | 159

A compound list item is a list item that has blocks attached to it, including paragraphs, which fol­
low the (optionally empty) principal text. In other words, the list item contains block content. This
scenario is different from a list item whose principal text merely spans multiple lines, a distinction
which is further explained on this page. The page goes on to explain how to attach a block to a list
item in an ancestor list.

In additional to unordered and ordered lists, callout and description lists also support compound
list items. On this page, the term list item refers to any list item in an unordered, ordered, callout,
and description list. For a description list, it refers specifically to the description of the list item (not
the list item term).

The main focus of the syntax covered on this page is to keep the list continuous (i.e., to prevent the
list from breaking).

Multiline principal text

As with regular paragraph text, the principal text in a list item can span any number of lines as long
as those lines are contiguous (i.e., adjacent with no empty lines). Multiple lines are combined into a
single paragraph and wrap as regular paragraph text. This behavior holds even if the lines are
indented, as shown in the third bullet in this example:

* The document header in AsciiDoc is optional.
If present, it must start with a document title.

* Optional author and revision information lines
immediately follow the document title.

* The document header must be separated from
 the remainder of the document by one or more
 empty lines and it cannot contain empty lines.

• The document header in AsciiDoc is optional. If present, it must start with a document title.

• Optional author and revision information lines immediately follow the document title.

• The document header must be separated from the remainder of the document by one or
more empty lines and it cannot contain empty lines.


When list items contain more than one line of text, leave an empty line between
items to make the list easier to read while working in the code. An empty line
between two list items will not break the list.

Empty lines in a list

Empty lines between two items in a list (ordered or unordered) will not break the list. For ordered
lists, this means the numbering will be continuous rather than restarting at 1. (See Separating Lists
to learn how to force two adjacent lists apart).

160 | Compound List Items

If an empty line after a list item is followed by the start of a block, such as a paragraph or delimited
block rather than another list item, the list will terminate at this point. If this happens, you’ll notice
that a subsequent list item will be placed into a new list. For ordered lists, that means the number­
ing will restart (at 1).

To keep the list continuous in those cases—such as when you’re documenting complex steps in a
procedure—you must use a list continuation to attach blocks to the list item. For ordered lists, this
will ensure that the numbering continues from one list item to the next rather than being reset.

Attach blocks using a list continuation

In addition to the principal text, a list item may contain block elements, including paragraphs,
delimited blocks, and block macros. To add block elements to a list item, you must “attach” them (in
a series) using a list continuation. This technique works for unordered and ordered lists as well as
callout and description lists.

A list continuation is a + symbol on a line by itself, immediately adjacent to the block being
attached. The attached block must be left-aligned, just like all blocks in AsciiDoc.


A + at the end of a line, rather than on a line by itself, is not a list continuation.
Instead, it creates a hard line break.

Here’s an example of a list item that uses a list continuation:

* The header in AsciiDoc must start with a document title.
+
The header is optional.

• The header in AsciiDoc must start with a document title.

The header is optional.

Using a list continuation, you can attach any number of block elements to a list item. Unless the
block is inside a delimited block which itself has been attached, each block must be preceded by a
list continuation to form a chain of blocks.

Here’s an example that attaches both a listing block and a paragraph to the first list item:

* The header in AsciiDoc must start with a document title.
+

= Document Title

+
Keep in mind that the header is optional.

* Optional author and revision information lines immediately follow the document

Compound List Items | 161

title.
+

= Document Title
Doc Writer <doc.writer@asciidoc.org>
v1.0, 2022-01-01

Here’s how the source is rendered:

A list with compound content

• The header in AsciiDoc must start with a document title.

= Document Title

Keep in mind that the header is optional.

• Optional author and revision information lines immediately follow the document title.

= Document Title
Doc Writer <doc.writer@asciidoc.org>
v1.0, 2022-01-01

Notice that we inserted an empty line after the attached paragraph block. That’s because only a sib­
ling list item can interrupt a paragraph. If the next list item had been a nested list item instead of a
sibling, this empty line would have been required. Otherwise, the nested list marker and text would
have just become the next line of the paragraph. For consistency, a best practice is to always include
an empty line at the end of a compound list item. That way, you never have to remember when it’s
required.



A sibling or nested list item acts as an interrupting line for the principal text of a
list item. Only a sibling list item acts as an interrupting line for an attached block,
such as a paragraph. (The AsciiDoc Language working group has decided that the
latter exception will be removed, so it’s best not to depend on it.)

If you’re attaching more than one block to a list item, you’re strongly encouraged to wrap the con­
tent inside an open block. That way, you only need a single list continuation line to attach the open
block to the list item. Within the open block, you write like you normally would, no longer having to
worry about adding list continuations between the blocks to keep them attached to the list item.

Here’s an example of wrapping compound list content in an open block:

* The header in AsciiDoc must start with a document title.
+
--

162 | Compound List Items

Here's an example of a document title:

= Document Title

NOTE: The header is optional.
--

Here’s how that content is rendered:

A list with compound content wrapped in an open block

• The header in AsciiDoc must start with a document title.

Here’s an example of a document title:

= Document Title

 The header is optional.

The open block wrapper is also useful if you’re including content from a shared file into a list item.
For example:

* list item
+
--
include::shared-content.adoc[]
--

By wrapping the include directive in an open block, the content can be used unmodified.

The only limitation of this technique is that the content itself may not contain an open block since
open blocks cannot (yet) be nested.

Drop the principal text

If the principal text of a list item is empty, the node for the principal text is dropped. This is how
you can get the first block (such as a listing block) to line up with the list marker. You can make the
principal text empty by using the {empty} attribute reference.

Here’s an example of a list that has items with only compound content.

. {empty}
+

Compound List Items | 163

print("one")

. {empty}
+

print("one")

Here’s how the source is rendered:

A list with compound content

1.
print("one")

2.
print("one")

Attach blocks to an ancestor list

Instead of attaching a block to the current list item, you may need to end that list and attach a block
to its ancestor instead. There are two ways to express this composition in the AsciiDoc syntax. You
can either enclose the child list in an open block, or you can use insert empty lines above the list
continuation to first escape from the nesting. Let’s look at enclosing the child list in an open block
first, since that is the preferred method.

Enclose in open block

If you plan to attach blocks to a list item as a sibling of a nested list, the most robust way of creating
that structure is to enclose the nested list in an open block. That way, it’s clear where the nested list
ends and the current list item continues.

Here’s an example of a list item with a nested list followed by an attached paragraph. The open
block makes the boundaries of the nested list clear.

* grandparent list item
+
--
** parent list item
*** child list item
--
+
paragraph attached to grandparent list item

Here’s how the source is rendered:

164 | Compound List Items

A nested list enclosed in an open block

• grandparent list item

◦ parent list item

▪ child list item

paragraph attached to grandparent list item

The main limitation of this approach is that it can only be used once in the hierarchy (i.e., it can
only enclose a single nested list). That’s because the open block itself cannot be nested. If you
require more control, then you must use the ancestor list continuation.

Ancestor list continuation

Normally, a list continuation will attach a block to the current list item. For each empty line you add
before the list continuation, the association will move up one level in the nesting. In other words,
an empty line signals to the list continuation to back out of the current list by one level. As a result,
the block will be attached to the current item in an ancestor list. This syntax is referred to as an
ancestor list continuation.



The ancestor list continuation is a fragile syntax. For one, it may not be apparent to
new authors that the empty lines before the list continuation are significant. That’s
because the AsciiDoc syntax generally ignores repeating empty lines. There are
also scenarios where even these empty lines are collapsed, thus preventing the
ancestor list continuation from working as expected. Use this feature of the syntax
with caution. If possible, enclose the nested list in an open block, as described in
the previous section.

Here’s an example of a paragraph that’s attached to the parent list item after the nested list ends.
The empty line above the list continuation indicates that the block should be attached to current list
item in the parent list.

* parent list item
** child list item

+
paragraph attached to parent list item

Here’s how the source is rendered:

A block attached to the parent list item

• parent list item

◦ child list item
paragraph attached to parent list item

Compound List Items | 165

Each empty line that precedes the list continuation signals a move up one level of nesting. Here’s an
example that shows how to attach a paragraph to a grandparent list item using two leading empty
lines:

* grandparent list item
** parent list item
*** child list item

+
paragraph attached to grandparent list item

Here’s how the source is rendered:

A block attached to the grandparent list item

• grandparent list item

◦ parent list item

▪ child list item
paragraph attached to grandparent list item

Summary

On this page, you learned that the principal text of a list item can span multiple contiguous lines,
and that those lines can be indented for readability without affecting the output. You learned that
you can attach any type of block content to a list item using the list continuation. You also learned
that using this feature in combination with the open block makes it easier to create list items with
compound content, to attach blocks to a parent list, or to drop the principal text. Finally, you
learned that you can use the ancestor list continuation to attach blocks to the current item in an
ancestor list, and the risks with doing so.

166 | Compound List Items

Description Lists
A description list (often abbreviated as dlist in AsciiDoc) is an association list that consists of one or
more terms (or sets of terms) that each have a description. This list type is useful when you have a
list of terms that you want to emphasize and describe with text or other supporting content.


You may know this list variation by the antiquated term definition list. The pre­
ferred term is now description list, which matches the terminology used by the
HTML specification.

Anatomy
A description list item marks the beginning of a description list. Each item in a description list con­
sists of:

• one or more terms, each followed by a term delimiter (typically a double colon, ::, unless the
list is nested)

• one space or newline character

• the description in the form of text, attached blocks, or both

If a term has an anchor, the anchor must be defined at the start of the same line as the term.

The first term defines which term delimiter is used for the description list. The terms for the
remaining entries at that level must use the same delimiter.

The valid set of term delimiters is fixed. When the term delimiter is changed, that term begins a
new, nested description list (similar to how ordered and unordered lists work). The available term
delimiters you can use for this purpose are as follows:

• ::

• :::

• ::::

• ;;

There’s no direct correlation between the number of characters in the delimiter and the nesting
level. Each time you change delimiters (selected from this set), it introduces a new level of nesting.
This is how list depth is implied in a language with a left-aligned syntax. It’s customary to use the
delimiters in the order shown above to provide a hint that the list is nested at a certain level.

Basic description list
Here’s an example of a description list that identifies parts of a computer:

CPU:: The brain of the computer.
Hard drive:: Permanent storage for operating system and/or user files.

Anatomy | 167

https://html.spec.whatwg.org/multipage/grouping-content.html#the-dl-element

RAM:: Temporarily stores information the CPU uses during operation.
Keyboard:: Used to enter text or control items on the screen.
Mouse:: Used to point to and select items on your computer screen.
Monitor:: Displays information in visual form using text and graphics.

By default, the content of each item is displayed below the label when rendered. Here’s a preview
of how this list is rendered:

A basic description list

CPU

The brain of the computer.

Hard drive

Permanent storage for operating system and/or user files.

RAM

Temporarily stores information the CPU uses during operation.

Keyboard

Used to enter text or control items on the screen.

Mouse

Used to point to and select items on your computer screen.

Monitor

Displays information in visual form using text and graphics.

Mixing lists
The content of a description list can be any AsciiDoc element. For instance, we could split up a gro­
cery list by aisle, using description list terms for the aisle names.

Dairy::
* Milk
* Eggs
Bakery::
* Bread
Produce::
* Bananas

Dairy

• Milk

• Eggs

168 | Mixing lists

Bakery

• Bread

Produce

• Bananas

Description lists are quite lenient about whitespace, so you can spread the items out and even
indent the content if that makes it more readable for you:

Dairy::

 * Milk
 * Eggs

Bakery::

 * Bread

Produce::

 * Bananas

Nested description list
Finally, you can mix and match the three list types within a single hybrid list. The AsciiDoc syntax
tries hard to infer the relationships between the items that are most intuitive to us humans.

Here’s a list that mixes description, ordered, and unordered lists. Notice how the term delimiter is
changed from :: to ::: to create a nested description list.

Operating Systems::
 Linux:::
 . Fedora
 * Desktop
 . Ubuntu
 * Desktop
 * Server
 BSD:::
 . FreeBSD
 . NetBSD

Cloud Providers::
 PaaS:::
 . OpenShift
 . CloudBees
 IaaS:::
 . Amazon EC2

Nested description list | 169

 . Rackspace

Here’s how the list is rendered:

A hybrid list

Operating Systems

Linux

1. Fedora

◦ Desktop

2. Ubuntu

◦ Desktop

◦ Server

BSD

1. FreeBSD

2. NetBSD

Cloud Providers

PaaS

1. OpenShift

2. CloudBees

IaaS

1. Amazon EC2

2. Rackspace

You can include more compound content in a list item as well.

Horizontal Description List
If you want the first term and description of an item to start on the same line (i.e., horizontal
arrangement), add the horizontal style to the description list.

[horizontal]
CPU:: The brain of the computer.
Hard drive:: Permanent storage for operating system and/or user files.
RAM:: Temporarily stores information the CPU uses during operation.

CPU The brain of the computer.

Hard drive Permanent storage for operating system and/or user files.

RAM Temporarily stores information the CPU uses during operation.

170 | Horizontal Description List

By default, the term and description columns will be sized automatically. If the content is not
arranged in the way that you want, you need to adjust the width distribution.

You can control the width of the term and description columns using the (improperly named)
labelwidth and itemwidth attributes on the list, respectively. Both attributes are optional. The value
of each attribute is a number from 0 to 100 (a unitless percentage). If both attributes are specified,
their values should add up to 100.

[horizontal,labelwidth=25,itemwidth=75]
A short term:: The term for this item likely fits inside the column's width.
A long term that wraps across multiple lines:: The term for this item wraps since the
width of the term column is restricted using the `labelwidth` attribute.

A short term The term for this item likely fits inside the col­
umn’s width.

A long term that wraps across multiple
lines

The term for this item wraps since the width of
the term column is restricted using the label­
width attribute.

When converting to HTML, you can assign a role to the description list instead to control the col­
umn widths using CSS.

Question and Answer Lists
A question and answer (qanda) list is a special form of a description list that renders as an ordered
list. The entries are numbered using Arabic numerals starting at 1.

Question and answer list syntax

Each entry in the description list represents one question and answer combination. The term or
terms are used as the question and the description is used as the answer. If an entry has multiple
questions, each question is rendered on a new line.

[qanda]
What is the answer?::
This is the answer.

Are cameras allowed?::
Are backpacks allowed?::
No.

Rendered qanda list

1. What is the answer?

Question and Answer Lists | 171

This is the answer.

2. Are cameras allowed?

Are backpacks allowed?

No.

Description Lists With Marker


Not yet an official part of the AsciiDoc language and thus should be considered
experimental.

Asciidoctor introduces a list type that’s a hybrid between a description list and either an unordered
or ordered list. This hybrid list, often referred to as an unordered or ordered description list, has
the appearance of an unordered or ordered list, respectively, except that the subject of each list
item is emphasized in bold text and either offset from the description by a stop character followed
by a space or stacked above it.



Currently, only Asciidoctor PDF supports the syntax defined on this page, though
support in the HTML converter is in the works. Asciidoctor EPUB 3 supports a
slightly different variation in that is uses a different block style for unordered lists
(itemized instead of unordered). Though that difference will be aligned in a future
release.

Introduction

In an unordered and ordered description list, the first term in each item is preceded by a marker.
Additional terms are ignored. The marker is a bullet for an unordered list or a number for an
ordered list. The term effectively becomes the subject, appearing in bold text.

Here’s an example of a description list with marker.

• boolean: use true and false, not 1 and 0 or T and F

• number: use Arabic numerals without punctuation (other than the decimal point in a
floating point number)

• enumerated value: use only one of the allowed values, respecting case

This list type also provides control over the stop character that’s inserted after the term so it can
more naturally flow into the item description. It can also be configured so that the subject is stacked
above the description. This page describes the syntax of this list type and how to customize its
appearance.

Syntax

In AsciiDoc, a description list with a marker is defined just like a normal description list. The differ­
ence is that it must be annotated with either the unordered or ordered block style. The unordered

172 | Description Lists With Marker

block style creates an unordered list and the ordered block style creates an ordered list.

Here’s an example of an unordered description list.

[unordered]
boolean:: use true and false, not 1 and 0 or T and F
number:: use Arabic numerals without punctuation (other than the decimal point to make
a floating point number)
enumerated value:: use only one of the allowed values, respecting case

Here’s how this syntax will appear, where supported:

• boolean: use true and false, not 1 and 0 or T and F

• number: use Arabic numerals without punctuation (other than the decimal point in a
floating point number)

• enumerated value: use only one of the allowed values, respecting case

To make an ordered list instead, change the block style to ordered.

[ordered]
&:: ampersand
>:: greater than

Here’s how this syntax will appear, where supported:

1. &: ampersand

2. >: greater than

Subject stop

By default, the subject (i.e., the term) is followed immediately by a colon (still in bold) and offset
from the description by a space. You can replace the colon with another character (or sequence of
characters) using the block attribute named subject-stop.

[unordered,subject-stop=)]
alpha:: partially feature complete, unstable, and subject to change
beta:: feature complete and undergoing testing

Here’s how this syntax will appear, where supported:

• alpha) partially feature complete, unstable, and subject to change

• beta) feature complete and undergoing testing

Description Lists With Marker | 173

If the term ends with a period or the value of the subject-stop attribute, the subject stop is not
added.


To insert a space between the subject and visible stop character(s), add a space
character at the start of the value of the subject-stop attribute. You’ll also need to
enclose the value in double quotes so the space character is preserved.

Stacked

A description list with marker uses a run-in layout by default. In other words, the subject appears
on the same line as the description, separated by the subject stop and a space. To make the subject
appear above the description, like in a normal description list, add the stack role to the list. In this
case, the stop character is only added if specified explicitly.

[unordered.stack]
boolean:: use true and false, not 1 and 0 or T and F
number:: use Arabic numerals without punctuation (other than the decimal point to make
a floating point number)
enumerated value:: use only one of the allowed values, respecting case

Here’s how this syntax will appear, where supported:

• boolean
use true and false, not 1 and 0 or T and F

• number
use Arabic numerals without punctuation (other than the decimal point in a floating point
number)

• enumerated value
use only one of the allowed values, respecting case



We may decide to replace the stack role with the stacked option (i.e., %stacked).
Alternately, we may decide to reverse the default behavior and make a description
list with marker stacked by default, with run-in as an option (i.e., %run-in). These
adjustments will be made when this feature is standardized.

Alternatives

As an alternative to using a description list with marker, you can use a normal unordered or
ordered list and format the subject and stop character manually.

* *boolean:* use true and false, not 1 and 0 or T and F
* *number:* use Arabic numerals without punctuation (other than the decimal point in a
floating point number)
* *enumerated value:* use only one of the allowed values, respecting case

174 | Description Lists With Marker

This syntax gives you maximum portability in the short-term.

Although lacking proper semantics, the other way to achieve the same result is to nest a single-item
description list inside an otherwise empty list item.

* {empty}
boolean:: use true and false, not 1 and 0 or T and F
* {empty}
number:: use Arabic numerals without punctuation (other than the decimal point in a
floating point number)
* {empty}
enumerated value:: use only one of the allowed values, respecting case

Description Lists With Marker | 175

Links
AsciiDoc offers a variety of ways of creating links (aka hyperlinks) to other addressable resources.
The pages in this section document how to add and customize links in AsciiDoc.

URLs and links
The target of a link is a Uniform Resource Locator (URL), otherwise known as a web address. The
text the reader clicks to navigate to that target is referred to as the link text.


You may sometimes see the term URI used in place of a URL. Although the URI is
more technically correct in some cases, URL is the accepted term.

The URL is the web address of a unique resource. A URL can either be absolute or relative. An
absolute URL consists of a scheme, an authority (i.e., domain name), a path with an optional file
extension, and metadata in the form of a query string and fragment (e.g., https://example.org/asci­
idoc/links.html?source=home). You may recognize an absolute URL as what you type in the location
bar of a web browser, such as the one for this page. A relative URL is the portion of an absolute URL
that starts after either the root path or a subpath (e.g., guides/getting-started.html).

Since an absolute URL has a distinct, recognizable syntax, an AsciiDoc processor will detect URLs
(unless escaped) and automatically convert them to links wherever the macros substitution step is
applied. This also works for bare email addresses. You can learn more about this behavior in
Autolinks. To make a link to a relative URL, you must be specify it explicitly as the target of a link
macro.

Link-related macros
Instead of showing the bare URL or email address as the link text, you may want to customize that
text. Or perhaps you want to apply attributes to the link, such as a role. To do so, you’d use either
the URL macro or, if you’re linking to a complex URL, the more decisive link macro. (You can also
use the link macro to make a link to an addressable resource using a relative URL or a URL that is
not otherwise recognized as an absolute URL).

When linking to an email address, you can use the specialized mailto macro to enhance the link
with prepopulated subject and body text.

Encode reserved characters
If the URL contains reserved characters, such as double quote ("), space, or an unconstrained Asci­
iDoc formatting mark, you’ll need to encode these characters using URI encoding. For example, a
double quote is encoded as %22. An underscore is encoded as %5F. If you do not encode these charac­
ters, the URL may be mangled or cause the processor to fail.

Let’s assume we are creating a URL that contains a query string parameter named q that contains
reserved characters:

176 | URLs and links

https://en.wikipedia.org/wiki/URL

https://example.org?q=label:"Requires docs"

To encode a URL, open the development tools in your browser and pass the URL to the encodeURI
function:

encodeURI('http://example.org?q=label:"Requires docs"')

Here’s the encoded URL that we’d use in the AsciiDoc document:

https://example.org?q=label:%22Requires%20docs%22

Depending on the capabilities of the web application, the space character can be encoded as +
instead of %20.

Hide the URL scheme
If the link text is a bare URL (aka URI), whether that link was created automatically or using a link-
related macro, you can configure the AsciiDoc processor to hide the scheme (e.g., https://). Hiding
the scheme can make the URL more readable—perhaps even recognizable—to a person less famil­
iar with technical nomenclature.

To configure the AsciiDoc processor to display the linked URL without the scheme part, set the hide-
uri-scheme attribute in the header of the AsciiDoc document.

= Document Title
:hide-uri-scheme: ①

https://asciidoctor.org

① Note the use of uri instead of url in the attribute name.

When the hide-uri-scheme attribute is set, the above URL will be displayed to the reader as follows:

asciidoctor.org

Note the absence of https:// in the URL. The prefix will still be present in the link target.

Autolinks
The AsciiDoc processor will detect common URLs (unless escaped) wherever the macros substitu­
tion step is applied and automatically convert them into links. This page documents the recognized
URL schemes and how to disable this behavior on a case-by-case basis.

Hide the URL scheme | 177

https://asciidoctor.org

URL schemes for autolinks

AsciiDoc recognizes the following common URL schemes without the help of any markup:

• http

• https

• ftp

• irc

• mailto

The URL in the following example begins with a recognized protocol (i.e., https), so the AsciiDoc
processor will automatically turn it into a hyperlink.

The homepage for the Asciidoctor Project is https://www.asciidoctor.org. ①

① The trailing period will not get caught up in the link.

The URL is also used as the link text. If you want to use custom link text, you must use the URL
macro.

In plain text documents, a bare URL is often enclosed in angle brackets.

You'll often see <https://example.org> used in examples.

To accommodate this convention, the AsciiDoc processor will still recognize the URL as an autolink,
but will discard the angle brackets in the output (as they are not deemed significant).

The angled brackets are also a convenient way to delinate the boundaries of the URL. If the bare
URL is capturing more characters than it should, you can mark the boundaries explicitly using the
angle brackets.

<https://google.com> -- where you find stuff

Without the angle brackets delinating the boundaries of the URL, the emdash gets caught up in the
URL. This happens because the replacements substitution is applied before the macros substitution.
So instead of the URL being followed by a space, it’s followed directly by the emdash. The angle
brackets ensures it does get included in the URL.

Any link created from a bare URL (i.e., an autolink) automatically gets assigned the "bare" role. This
allows the theming system (e.g., CSS) to recognize autolinks (and other bare URLs) and style them
distinctly.

Email autolinks

AsciiDoc also detects and autolinks most email addresses.

178 | Autolinks

Email us at hello@example.com to say hello.

In order for this to work, the domain suffix must be between 2 and 5 characters (e.g., .com) and
only common symbols like period (.), hyphen (-), and plus (+) are permitted. For email address
which do not conform to these restriction, you can use the email macro.

Escaping URLs and email addresses

To prevent automatic linking of a URL or email address, you can add a single backslash (\) in front
of it.

Once launched, the site will be available at \https://example.org.

If you cannot access the site, email \help@example.org for assistance.

The backslash in front of the URL and email address will not appear in the output. The URL and
email address will both be shown in plain text.

Since autolinks are a feature of the macros substitution, another way to prevent automatic linking
of a URL or email address is to turn off the macros substitution using incremental subs.

[subs=-macros]
Once launched, the site will be available at https://example.org.

The subs attribute is only recognized on a leaf block, such as a paragraph.

URL Macro
If you’re familiar with the AsciiDoc syntax, you may notice that a URL almost looks like an inline
macro. All that’s missing is the pair of the trailing square brackets. In fact, if you add them, then a
URL is treated as an inline macro. We call this a URL macro.

This page introduces the URL macro, when you would want to use it, and how it differs from the
link macro.

From URL to macro

To transform a URL into a macro, add a pair of square brackets to the end of the URL. For example:

https://asciidoctor.org[]

Since no text is specified, this macro behaves the same as an autolink. In this case, the link automat­
ically gets assigned the “bare” role.

When the URL is followed by a pair of square brackets, the URL scheme dually serves as the macro

URL Macro | 179

name. AsciiDoc recognizes all the URL schemes for autolinks as macro names (e.g., https). That’s
why we say “URL macros” and not just “URL macro”. It’s a family of macros. With the exception of
the mailto macro, all the URL macros behave the same, and also behave the same as the link macro.

So why might you graduate from a URL to a URL macro? One reason is to force the URL to be parsed
when it would not normally be recognized, such as if it’s enclosed in double quotes:

Type "https://asciidoctor.org[]" into the location bar of your browser.

Another is when the URL of an autolink is being ended too soon. The URL macro allows you to
explicitly mark the boundary of the URL.

Use http://example.com?menu=<value>[] to open to the menu named `<value>`.

A more common reason is to specify custom link text.

Custom link text

Instead of displaying the URL, you can configure the link to display custom text. When the reader
clicks on the text, they are directed to the target of the link, the URL.

To customize the text of the link, insert that text between the square brackets of the URL macro.

Chat with other Fedora users in the irc://irc.freenode.org/#fedora[Fedora IRC
channel].

Since the text is subject to normal substitutions, you can apply formatting to it.

Ask questions in the https://chat.asciidoc.org[*community chat*].

Link attributes

You can use the attribute list to further customize the link, such as to make it target a new window
and apply a role to it.

Chat with other AsciiDoc users in the https://chat.asciidoc.org[*project
chat*^,role=green].

To understand how the text between the square brackets of a URL macro is parsed, see attribute
parsing.

180 | URL Macro

Link Macro
The link macro is the most explicit method of making a link in AsciiDoc. It’s only necessary when
the behavior of autolinks and URL macros proves insufficient. This page covers the anatomy of the
link macro, when it’s required, and how to use it.

Anatomy

The link macro is an inline macro. Like other inline macros, its syntax follows the familiar pattern
of the macro name and target separated by a colon followed by an attribute list enclosed in square
brackets.

link:<target>[<attrlist>]

The <target> becomes the target of the link. the <attrlist> is the link text unless a named attribute
is detected. See link macro attribute list to learn how the <attrlist> is parsed.

Like all inline macros, the link macro can be escaped using a leading backslash (\).

Link to a relative file

If you want to link to a non-AsciiDoc file that is relative to the current document, use the link
macro in front of the file name.

 To link to a relative AsciiDoc file, use the xref macro instead.

Here’s an example that demonstrates how to use the link macro to link to a relative file path:

link:downloads/report.pdf[Get Report]

The AsciiDoc processor will create a link to report.pdf with the text "Get Report", even though the
target is not a URL.

If the target file is an HTML file, and you want to link directly to an anchor within that document,
append a hash (#) followed by the name of the anchor after the file name:

link:tools.html#editors[]

Note that when linking to a relative file, even if it’s an HTML file, the link text is required.

When to use the link macro

Since AsciiDoc provides autolinks and URL macros, the link macro is not often needed. Here are the
few cases when the link macro is necessary:

• The target is not a URL (e.g., a relative path)

Link Macro | 181

• The target must be enclosed in a passthrough to escape characters with special meaning

• The URL macro is not bounded by spaces, brackets, or quotes.

• The target is a URL that does not start with a scheme recognized by AsciiDoc

The most common situation is when the target is not a URL. For example, you would use the link
macro to create a link to a relative path.

link:report.pdf[Get Report]

 If the relative path is another AsciiDoc file, you should use the xref macro instead.

You may also discover that spaces are not permitted in the target of the link macro, at least not in
the AsciiDoc source. The space character in the target prevents the parser from recognizing the
macro. So it’s necessary to escape or encode it. Here are three ways to do it:

Example 134. Escape a space using a passthrough

link:pass:[My Documents/report.pdf][Get Report]

Example 135. Encode a space using a character reference ()

link:My Documents/report.pdf[Get Report]

Example 136. Encode a space using URL encoding (%20)

link:My%20Documents/report.pdf[Get Report]

Escaping or encoding the space ensures that the space does not prevent the link macro from being
recognized. The downside of using URL encoding is that it will be visible in the automatic link text
since the browser does not decode it in that location. In this case, the character reference is prefer­
able.

There are other characters that are not permitted in a link target as well, such as a colon. You can
escape those using the same technique.

Example 137. Encode a colon using URL encoding (%3A)

link:Avengers%3A%20Endgame.html[]

Another common case is when you need to use a passthrough to escape characters with special
meaning. In this case, the AsciiDoc processor will not recognize the target as a URL, and thus the
link macro is necessary. An example is when the URL contains repeating underscore characters.

link:++https://example.org/now_this__link_works.html++[]

182 | Link Macro

A similar situation is when the URL macro is not bounded by spaces, brackets, or quotes. In this
case, the link macro prefix is required to increase the precedence so that the macro can be recog­
nized.

|link:https://asciidoctor.org[]|

Finally, if the target is not recognized as a URL by AsciiDoc, the link macro is necessary. For exam­
ple, you might use the link macro to make a file link.

link:file:///home/username[Your files]

Final word

The general rule of thumb is that you should only put the link: macro prefix in front of the target if
the target is not a URL. Otherwise, the prefix just adds verbosity.

Troubleshooting Complex URLs
A URL may not display correctly when it contains characters such as underscores (_) or carets (^).
This problem occurs because the markup parser interprets parts of the URL (i.e., the link target) as
valid text formatting markup. Most lightweight markup languages have this issue because they
don’t use a grammar-based parser. The AsciiDoc language plans to handle URLs more carefully in
the future (see Asciidoctor issue #281), which may be solved by moving to a grammar-based parser
(see Asciidoctor issue #61). Thankfully, there are many ways to include URLs of arbitrary complex­
ity using the AsciiDoc passthrough mechanisms.

Solution A

The simplest way to get a link to behave is to assign it to an attribute.

= Document Title
:link-with-underscores: https://asciidoctor.org/now_this__link_works.html

This URL has repeating underscores {link-with-underscores}.

The AsciiDoc processor won’t break links with underscores when they are assigned to an
attribute because inline formatting markup is substituted before attributes. The URL remains
hidden while the rest of the document is being formatted (strong, emphasis, monospace, etc.).

Solution B

Another way to solve formatting glitches is to explicitly specify the formatting you want to
have applied to a span of text. This can be done by using the inline pass macro. If you want to
display a URL, and have it preserved, put it inside the pass macro and enable the macros sub­
stitution, which is what substitutes links.

Troubleshooting Complex URLs | 183

https://github.com/asciidoctor/asciidoctor/issues/281
https://github.com/asciidoctor/asciidoctor/issues/61

This URL has repeating underscores
pass:macros[https://asciidoctor.org/now_this__link_works.html].

The pass macro removes the URL from the document, applies the macros substitution to the
URL, and then restores the processed URL to its original location once the substitutions are
complete on the whole document.

Alternatively, you can use the double plus inline macro (++) around the URL only. However,
when you use this approach, the AsciiDoc processor won’t recognize it as a URL any more, so
you have to use the explicit link prefix.

This URL has repeating underscores
link:++https://asciidoctor.org/now_this__link_works.html++[].

For more information, see Asciidoctor issue #625.

Link & URL Macro Attribute Parsing
If named attributes are detected between the square brackets of a link or URL macro, that text is
parsed as an attribute list. This page explains the conditions when this occurs and how to write the
link text so it is recognized as a single positional attribute.

Link text alongside named attributes

Normally, the whole text between the square brackets of a link macro is treated as the link text (i.e.,
the first positional attribute).

https://chat.asciidoc.org[Discuss AsciiDoc]

However, if the text contains an equals sign (=), the text is parsed as an attribute list. The exact rules
for attribute list parsing and positional attributes are rather complex, and discussed on Positional
and Named Attributes. To be sure the link text is recognized properly, you can apply these two sim­
ple checks:

• contains no comma (,) or equals sign (=) or

• enclosed in double quotes (")

There are several other situations in which text before the first comma may be recognized as the
link text. Let’s consider some examples.

The following example shows a URL macro with custom link text alongside named attributes.

https://chat.asciidoc.org[Discuss AsciiDoc,role=resource,window=_blank]

184 | Link & URL Macro Attribute Parsing

https://github.com/asciidoctor/asciidoctor/issues/625

Let’s consider a case where the link text contains a comma and the macro also has named attrib­
utes. In this case, you must enclose the link text in double quotes so that it is capture in its entirety
as the first positional attribute.

https://example.org["Google, DuckDuckGo, Ecosia",role=teal]

Similarly, if the link text contains an equals sign, you can enclose the link text in double quotes to
ensure the parser recognizes it as the first positional attribute.

https://example.org["1=2 posits the problem of inequality"]

If the quoted link text itself contains the quote character used to enclose the text, escape the quote
character in the text by prefixing it with a backslash.

https://example.org["href=\"#top\" attribute"] creates link to top of page

The double quote enclosure is not required in all cases when the link text contains an equals sign.
Strictly speaking, the enclosure is only required when the text preceding the equals sign matches a
valid attribute name. However, it’s best to use the double quotes just to be safe.

Finally, to use named attributes without specifying link text, you simply specify the named attrib­
utes. (In other words, you leave the first positional attribute empty, in which case the target will be
used as the link text).

https://chat.asciidoc.org[role=button,window=_blank,opts=nofollow]

The link macro recognizes all the common attributes (id, role, and opts). It also recognizes a hand­
ful of attributes that are specific to the link macro.

Target a separate window

By default, the link produced by a link macro will target the current window. In other words, click­
ing on it will replace the current page.

You can configure the link to open in a separate window (or tab) using the window attribute.

https://asciidoctor.org[Asciidoctor,window=read-later]

In the HTML output, the value of the window attribute is assigned to the target attribute on the <a>
tag (e.g., target=read-later).

Target a blank window

Most of the time, you’ll use the window attribute to target a blank window. Configuring a link that

Link & URL Macro Attribute Parsing | 185

points to a location outside the current site is common practice to avoid disrupting the reader’s
flow. To enable this behavior, you set the window attribute to the special value _blank.

https://asciidoctor.org[Asciidoctor,window=_blank]

In the HTML output, the value of the window attribute is assigned to the target attribute on the <a>
tag (e.g., target=_blank). If the target is _blank, the processor will automatically add the rel=noopener
attribute as well.



The underscore at the start of the value _blank can unexpectedly form a con­
strained formatting pair when another underscore appears somewhere else in the
line or paragraph, thus causing the macro to break. You can avoid this problem
either by escaping the underscore at the start of the value (i.e., window=_blank) or
by using the Blank window shorthand instead.

noopener and nofollow

The noopener option is used to control access to the window opened by a link. This option is only
available if the window attribute is set. This option adds the noopener flag to the rel attribute on the
<a> element in the HTML output (e.g., rel="noopener").

When the value of the window attribute is _blank, the AsciiDoc processor implicitly sets the noopener
option. Doing so is considered a security best practice.

https://asciidoctor.org[Asciidoctor,window=_blank]

If the window is not _blank, you need to enable the noopener flag explicitly by setting the noopener
option on the macro:

https://asciidoctor.org[Asciidoctor,window=read-later,opts=noopener]

If you don’t want the search indexer to follow the link, you can add the nofollow option to the
macro. This option adds the nofollow flag to the rel attribute on the <a> element in the HTML out­
put, alongside noopener if present (e.g., rel="nofollow noopener").

https://asciidoctor.org[Asciidoctor,window=_blank,opts=nofollow]

or

https://asciidoctor.org[Asciidoctor,window=read-later,opts="noopener,nofollow"]

To fine tune indexing within the site, you can specify the nofollow option even if the link does not
target a separate window.

186 | Link & URL Macro Attribute Parsing

link:post.html[My Post,opts=nofollow]

Blank window shorthand

Configuring an external link to target a blank window is a common practice. Therefore, AsciiDoc
provides a shorthand for it.

In place of the named attribute window=_blank, you can insert a caret (^) at the end of the link text.
This syntax has the added benefit of not having to worry about the underscore at the start of the
value _blank unexpectedly forming a constrained formatting pair when another underscore
appears in the same line or paragraph.

Let's view the raw HTML of the link:view-source:asciidoctor.org[Asciidoctor
homepage^].


In rare circumstances, if you use the caret syntax more than once in the same line
or paragraph, you may need to escape the first occurrence with a backslash. How­
ever, the processor should try to avoid making this a requirement.

If the attribute list has both link text in double quotes and named attributes, the caret should be
placed at the end of the link text, but inside the double quotes.

https://example.org["Google, DuckDuckGo, Ecosia^",role=btn]

If no named attributes are present, the link text should not be enclosed in quotes.

https://example.org[Google, DuckDuckGo, Ecosia^]

Mailto Macro
The mailto macro is a specialization of the URL macro that adds support for defining an email link
with text and augmenting it with additional metadata, such as a subject and body.

Link text and named attributes

Using an attribute list, you can specify link text as well as named attributes such as id and role.
Unlike other URL macros, you must add the mailto: prefix in front of the email address in order to
append an attribute list.

Here’s an example of an email link with explicit link text.

mailto:join@discuss.example.org[Subscribe]

Mailto Macro | 187

If you want to add a role to this link, you can do so by appending the role attribute after a comma.

mailto:join@discuss.example.org[Subscribe,role=email]

If the link text contains a comma, you must enclose the text in double quotes. Otherwise, the por­
tion of the text that follows the comma will be interpreted as additional attribute list entries.

mailto:join@discuss.example.org["Click, subscribe, and participate!"]

To learn more about how the attributes are parsed, refer to attribute parsing.

Subject and body

Like with other URL macros, the first positional attribute of the email macro is the link text. If a
comma is present in the text, and the text is not enclosed in quotes, or the comma comes after the
closing quote, the next positional attribute is treated as the subject line.

For example, you can configure the email link to populate the subject line when the reader clicks
the link as follows:

mailto:join@discuss.example.org[Subscribe,Subscribe me]

When the reader clicks the link, a conforming email client will fill in the subject line with “Sub­
scribe me”.

If you want the body of the email to also be populated, specify the body text in the third positional
argument.

mailto:join@discuss.example.org[Subscribe,Subscribe me,I want to participate.]

When the reader clicks the link, a conforming email client will fill in the body with “I want to par­
ticipate.”

If you want to reuse the email address as the link text, leave the first positional attribute empty.

mailto:join@discuss.example.org[,Subscribe me,I want to participate.]

If you only want to specify a subject, leave off the body.

mailto:join@discuss.example.org[,Subscribe me]

If either the subject or body contains a comma, that value must be enclosed in double quotes.

188 | Mailto Macro

mailto:join@discuss.example.org[Subscribe,"I want to participate, so please subscribe
me"]

To learn more about how the attributes are parsed, refer to attribute parsing.

Link, URL, and Mailto Macro Attributes Reference
These attributes apply to the link, URL, and mailto (email) macros.

Attrib
ute

Value(s) Example Syntax Comments

id Unique identifier
for element in out­
put

https://asciidoc­
tor.org[Home,id=home]

role CSS classes avail­
able to inline ele­
ments

https://chat.asciidoc.org[Dis­
cuss AsciiDoc,role=teal]

title Description of link,
often show as
tooltip.

https://asciidoc­
tor.org[Home,title=Project
home page]

window any https://chat.asciidoc.org[Dis­
cuss AsciiDoc,win­
dow=_blank]

The blank window target can also be
specified using ^ at the end of the link
text.

window
(short­
hand)

^ https://example.org[Google,
DuckDuckGo, Ecosia^]
https://chat.asciidoc.org[Dis­
cuss AsciiDoc^]

opts Additional options
for link creation.

https://asciidoc­
tor.org[Home,opts=nofollow]

Option names include: nofollow,
noopener

Link, URL, and Mailto Macro Attributes Reference | 189

Cross References
A link to another location within the current AsciiDoc document or in another AsciiDoc document
is called a cross reference (also referred to as an xref). To create a cross reference, you first need
to define the location where the reference will point (i.e., the anchor). Then, you need to use one of
the forms of the inline xref macro to create a reference to that location. From there, you can cus­
tomize the text of the reference in various ways.

Automatic anchors
It’s important to understand that many anchors are already defined for you. Using default settings,
the AsciiDoc processor automatically creates an anchor for every section and discrete heading. It
does so by generating an ID for that section (or discrete heading) and registering that ID in the ref­
erences catalog. You can then use that ID as the target of a cross reference.

For example, considering the following section.

= Section Title

The AsciiDoc processor automatically assigns the ID _section_title to this section, which you can
then use as the target of an xref to create a reference to this section. You can also customize how
this ID is generated. Refer to Autogenerate Section IDs for more information about how an AsciiDoc
processor generates these IDs.

If you’re referring to a content element other than a section, you’ll need to define an anchor on that
element explicitly.

Internal cross references
In AsciiDoc, the shorthand xref is used to create a cross reference to an element (e.g., section, block,
list item, etc.) that has an ID within the same document. The shorthand xref is processed by the
macros substitution.

If the cross reference specifies both an ID and text, the text is formatted and used as the link text. If
the cross reference only specifies the ID, the reftext of the target element (typically the formatted
title) is automatically used as the link text. If the element does not define reftext, a stylized form of
the ID is used instead. Whether the ID is assigned explicitly on the referenced element or auto-gen­
erated does not affect how this mechanism works.

Currently, an AsciiDoc processor can resolve a cross reference to the following elements:

• Section (ID or block anchor)

• Block (ID or block anchor)

• Block macro (ID)

• Inline anchor anywhere in a paragraph

190 | Automatic anchors

• Inline anchor at the start of a list item or table cell

• Bibliography anchor in a bibliography list

Note that the processor cannot resolve the ID assigned to a span of formatted text. If the cross refer­
ence cannot be resolved, and verbose mode is enabled, the AsciiDoc processor issues a warning
about a possible invalid reference. In this case, the output document will reference the target
blindly, so it’s possible it will still function.

You create a cross reference by enclosing the ID of the target block or section (or the path of
another document with an optional anchor) in double angled brackets.

Example 138. Cross reference using the ID of the target section

The section <<anchors>> describes how automatic anchors work.

The result of Example 138 is displayed below.

The section Automatic anchors describes how automatic anchors work.

Explicit link text

Converters usually use the reftext of the target as the default text of the link. When the document is
parsed, attribute references in the reftext are substituted immediately. When the reftext is dis­
played, additional reftext substitutions are applied to the text (specialchars, quotes, and replace­
ments).

You can override the reftext of the target by specifying alternative text at the location of the cross
reference. After the ID, add a comma and then enter the custom text you want the cross reference
to display.

Example 139. Cross reference with custom xreflabel text

Learn how to <<link-macro-attributes,use attributes within the link macro>>.

In this case, the target will be assumed to be an ID within the same document even if it contains a
dot (.).

You can also use the inline xref macro as an alternative to the xref shorthand.

Example 140. Inline xref macro

Learn how to xref:link-macro-attributes[use attributes within the link macro].

However, it’s best to reserve the use of the xref macro for creating interdocument cross references.

When using the xref macro, if the target contains a dot (.), it will be treated as a reference to
another document, not an ID within the same document. If the intention is to link to an ID within

Internal cross references | 191

the same document, the target must be proceeded by a hash (#).

Natural cross reference

You can also create a reference to a block or section using its title rather than its ID. This type of ref­
erence is referred to as a natural cross reference. The title must contain at least one space charac­
ter or contain at least one uppercase letter.

Example 141. Cross reference using a section’s title

Refer to <<Internal Cross References>>.

As a rule of thumb, the natural cross reference should only be used for rapid development or short-
lived content. As the content matures, you should switch to using IDs for referencing, ideally IDs
which are declared explicitly. By doing so, it ensures your references have maximum stability and
are shielded against title revisions.

Document to Document Cross References
The inline xref macro can also link to IDs in other AsciiDoc documents. This eliminates the need to
use direct links between documents that are coupled to a particular converter (e.g., HTML links). It
also captures the intent of the author to establish a reference to a section in another document.

Here’s how a cross reference is normally defined in AsciiDoc:

The section <<anchors>> describes how automatic anchors work.

This cross reference creates a link to the section with the ID anchors.

Let’s assume the cross reference is defined in the document document-a.adoc. If the target section is
in a separate document, document-b.adoc, the author may be tempted to write:

Refer to link:document-b.html#section-b[Section B] for more information.

However, this link is coupled to HTML output. What’s worse, if document-b.adoc is included in the
same document as document-a.adoc, the link will refer to a document that doesn’t even exist!

These problems can be alleviated by using an inter-document xref:

Refer to xref:document-b.adoc#section-b[Section B] for more information.

The ID of the target is now placed behind a hash symbol (#). Preceding the hash is the name of the
reference document (the file extension is optional). We’ve also added link text since an AsciiDoc
processor is not (yet) required to resolve the section title in a separate document.

192 | Document to Document Cross References


While the link text for a local (i.e., intradocument) cross reference is optional, the
link text for an interdocument cross reference is (currently) required.

When the AsciiDoc processor generates the link for this cross reference, it first checks to see if docu­
ment-b.adoc is included in the same document as document-a.doc (by comparing the xref target to
the include targets relative to the outermost document). If not, it will generate a link to document-
b.html, intelligently substituting the original file extension with the file extension of the output file.

Section B

If document-b.adoc is included in the same document as document-a.doc, then the document will be
dropped in the link target and look like the output of a normal cross reference:

Section B

Now you can create inter-document cross references without the headache.

Navigating between source files

In certain environments, such as a web interface for a source repository or an editor preview, you
might see the generated HTML when you visit the URL of the AsciiDoc source file. If not accounted
for, this has consequences for inter-document cross references.

Since the default suffix for inter-document cross references in the html5 backend is .html, the result­
ing link created in these environments may end up pointing to non-existent HTML files. In this case,
you need to change the inter-document cross references to refer to other AsciiDoc source files
instead.

The file extension chosen for inter-document cross references is controlled by the relfilesuffix
attribute. By default, this attribute is not set and the value of the outfilesuffix is used instead. If
you want to change the file extension that gets used, you can do so by setting the relfilesuffix
attribute.

The following example demonstrates how to use the relfilesuffix attribute to control the file
extension for inter-document cross references when you want to create a source-to-source refer­
ence. The assignment is hidden behind a check for env-name, where env-name is an attribute that is
only set in an environment where you need to make this type of reference.

= Document Title
ifdef::env-name[:relfilesuffix: .adoc]

See the xref:README.adoc[README].

We could also write the link as link:README{relfilesuffix}[README].

The links in the generated document will now point to README.adoc instead of README.html.

Document to Document Cross References | 193



This configuration is not actually necessary on GitHub, GitLab, or the browser pre­
view extension since those environments automatically set the value of relfile­
suffix to match the file extension of the source file. However, this setting may still
be required for other environments, so it’s worth knowing.

Mapping references to a different structure

While relfilesuffix gives you control over the end of the resolved path for an inter-document
cross reference, the relfileprefix attribute gives you control over the beginning of the path. When
resolving the path of an inter-document cross reference, if the relfileprefix attribute is set, the
value of this attribute gets prepended to the path. Let’s look at an example of when these two attrib­
utes are used together.

A common practice in website architecture is to move files into their own folder to make the path
format agnostic (called “indexify”). For example, the path filename.html becomes filename (which
targets filename/index.html). However, this is problematic for inter-document cross references. Any
cross reference that resolves to the path filename.html is now invalid since the file has moved to a
subfolder (and thus no longer a sibling of the referencing document).

To solve this problem, you can define the following two attributes:

:relfileprefix: ../
:relfilesuffix: /

Now, the cross reference <<filename.adoc,link text>> will resolve to ../filename instead of file­
name.html. Since this change is specific to the website architecture described, you want to be sure
to only set these attributes in that particular environment (either using an ifdef directive or via the
API).

Cross Reference Text and Styles
You can customize the style of the automatic cross reference text using the xrefstyle document
attribute. This customization brings the cross reference text formatting from the DocBook toolchain
to AsciiDoc processing, specifically during conversion.



Since this is a newer feature of the AsciiDoc language, it may not be supported by
all converters. Where you can find support for it is in Asciidoctor’s HTML, PDF,
and EPUB 3 converters. It’s not supported by the DocBook converter since it’s a fea­
ture the DocBook toolchain already provides.

Default styling

By default, the cross reference text matches the title of the referenced element. For example, if
you’re linking to a section titled “Installation”, the text of the cross reference link appears as:

194 | Cross Reference Text and Styles

Installation

If the reftext attribute is specified on the referenced element, that value is preferred over its title.
For example, let’s assume the section from the previous example was written as:

[reftext="Installation Procedure"]
=== Installation

In this case, the text of the cross reference link appears as:

Installation Procedure

Attribute references are substituted in the reftext during parsing and reftext substitutions (spe­
cialchars, quotes, and replacements) are applied to the value when it’s used during conversion.

If the reftext is not specified, the text of the cross reference is automatically generated. By default,
this text is the title of the reference.

Cross reference styles

The generated text of a cross reference is controlled by the xrefstyle. It will also vary for different
element types (section, figure, etc). Let’s consider the following document to learn how the xrefstyle
value affects the generated text of a cross reference.

== Installation

.Big Cats
image::big-cats.png[]

There are three built-in styles supported by the xrefstyle document attribute that you can choose
from to customize the generated text of a cross reference.

:xrefstyle: full

Uses the signifier for the reference followed by the reference number and emphasized (chapter
or appendix) or title enclosed in quotes (e.g., Section 2.3, “Installation”) (e.g., Figure 1, “Big Cats”).

:xrefstyle: short

Uses the signifier for the reference followed by the reference number (e.g., Section 2.3) (e.g., Fig­
ure 1).

:xrefstyle: basic

Uses the title only, only applying emphasis if the reference is a chapter or appendix (e.g., Installa­
tion) (e.g., Big Cats).

The xrefstyle attribute can also be specified directly on the xref macro to override the xrefstyle

Cross Reference Text and Styles | 195

value for a single reference (e.g., xref:installation[xrefstyle=short]). The element attribute sup­
ports the same three styles.

The xrefstyle formatting only applies to references that have both a title and number (or explicit
caption), but no explicit reftext. If the reference is a chapter or an appendix, the title is displayed in
italics instead of quotes (even when the xrefstyle is basic).

Let’s assume you want to reference a section titled “Installation” that has the number 2.3. The full
style is displayed as:

Section 2.3, “Installation”

The short style is displayed as:

Section 2.3

The basic style is displayed as:

Installation

The full and short styles only apply for references that have a caption. Specifically, the correspond­
ing <context>-caption attribute must be set for the target’s block type (e.g., listing-caption for list­
ing blocks, example-caption for example blocks, table-caption for tables, etc.). Otherwise, the basic
style is used.

Reference signifiers

You can use document attributes to customize the signifier that is placed in front of the reference’s
number. This reference signifier indicates the reference’s type (e.g., Chapter or Section).

• chapter-refsig — defines the signifier to use for a cross reference to a chapter (default: Chapter)

• section-refsig — defines the signifier to use for a cross reference to a section (default: Section)

• appendix-refsig — defines the signifier to use for a cross reference to an appendix (default:
Appendix)

(The signifier attribute for a part cross reference will be introduced once numeration is supported
for parts).

For example, to customize the word “Section”, define the section-refsig attribute in the document
header:

:section-refsig: Sect.

The full xrefstyle would then be displayed as:

196 | Cross Reference Text and Styles

Sect. 2.3, “Installation”

The short xrefstyle would be displayed as:

Sect. 2.3

If you unset the attribute, the signifier is dropped from the cross reference text. For example:

:!section-refsig:

In this case, the full xrefstyle will display only the number and title:

2.3, “Installation”

The short xrefstyle will fall back to the number only:

2.3

The basic xrefstyle is unaffected by the value of the signifier.

Only the aforementioned styles are provided out of the box. Support for a custom formatting string
is planned. Refer to #2212 for details. Until then, you can implement custom formatting in a custom
converter or overriding the xreftext method on the node.

Validate Cross References
An AsciiDoc processor is only required to provide limited support for validating internal cross ref­
erences. Validation occurs when a cross reference is first visited. Since there are still some refer­
ences aren’t stored in the parse tree (such as an anchor in the middle of a paragraph), which can
lead to false positives, these validations are hidden behind a flag.

When using Asciidoctor, you can enable validation of cross references in several ways:

• when using the CLI, passing the -v CLI option

• when using the API, setting the global variable $VERBOSE to the value true

• when using the API, setting the level on the global logger to INFO (i.e., Asciidoctor::LoggerMan­
ager.logger.level = :info)

All of these adjustments put the processor into pedantic mode. In this mode, the parser will imme­
diately validate cross references, issuing a warning message if the reference is not valid. If you set
the global variable $VERBOSE to true, it will also enable warnings in Ruby, which may not be what
you want.

Validate Cross References | 197

https://github.com/asciidoctor/asciidoctor/issues/2212

Consider the following example:

See <<foobar>>.

[#foobaz]
== Foobaz

If you run Asciidoctor in verbose/pedantic mode on this document (-v), it will send the following
warning message to the logger.

asciidoctor: WARNING: invalid reference: foobar

An AsciiDoc processor is only required to validate references within the same document (after any
includes are resolved).

198 | Validate Cross References

Footnotes
AsciiDoc provides the footnote macro for adding footnotes to your document. A footnote is a refer­
ence to an item in a footnote list. The footnote is defined in AsciiDoc at the location of the reference,
but the text is extracted to an item in the footnote list. You can refer to the same footnote in multi­
ple locations by assigning an ID to the first occurrence and referencing that ID in subsequent occur­
rences.


All AsciiDoc processors, including Asciidoctor, currently implement footnotes as
endnotes. The placement and numbering of footnotes can be customized using a
custom converter.

Footnote macro syntax
You can insert footnotes into your document using the footnote macro. The text of the footnote is
defined between the square brackets of the footnote macro (footnote:[text]). The footnote macro
accepts an optional ID using the target of the macro (footnote:id[text]). Specifying an ID allows
you to refer to that same footnote from multiple locations in the document. To make a reference to
a previously defined footnote, you specify the ID in the target without specifying text (foot­
note:id[]).

Example 142. Footnote syntax

The hail-and-rainbow protocol can be initiated at five levels:

. doublefootnote:[The double hail-and-rainbow level makes my toes tingle.] ① ②

. tertiary

. supernumerary

. supermassive

. apocalyptic

A bold statement!footnote:disclaimer[Opinions are my own.] ③

Another outrageous statement.footnote:disclaimer[] ④

① Insert the footnote macro directly after any punctuation. Note that the footnote macro only uses
a single colon (:).

② Insert the footnote’s content within the square brackets ([]). The text may span several lines.

③ If you plan to reuse a footnote, specify a unique ID in the target position.

④ To reference an existing footnote, you only need to specify the ID of the footnote in the target
slot. The text between the square brackets should be empty. If both the ID and text are specified,
and the ID has already been defined by an earlier footnote, the text is ignored.


If you find that having to put the footnote macro directly adjacent to a word makes
it difficult to read, you can insert an attribute reference in between that resolves to
an empty string (e.g., word{empty}footnote:[text]).

Footnote macro syntax | 199

The footnotes are numbered consecutively throughout the article.

The results of Example 142 are displayed below.

The hail-and-rainbow protocol can be initiated at five levels

1. double[1]

2. tertiary

3. supernumerary

4. supermassive

5. apocalyptic

A bold statement![2]

Another outrageous statement.[2]

Just like normal paragraph text, you can use text formatting markup in the text of the footnote.

Externalizing a footnote
Since footnotes are defined using an inline macro, the footnote content must be inserted alongside
the text it’s annotating. This requirement can make the text harder to read. You can solve this prob­
lem by externalizing your footnotes using document attributes.

When defining a document attribute that holds a footnote, you can name the document attributes
whatever you want. A common practice is to name the attribute using the fn- prefix. The name of
the attribute can be as verbose (fn-disclaimer) or concise (fn-1) as you prefer.

Here’s the previous example with the footnotes defined in document attributes and inserted using
attribute references.

Example 143. Externalized footnote

:fn-hail-and-rainbow: footnote:[The double hail-and-rainbow level makes my toes
tingle.]
:fn-disclaimer: footnote:disclaimer[Opinions are my own.]

The hail-and-rainbow protocol can be initiated at five levels:

. double{fn-hail-and-rainbow}

. tertiary

. supernumerary

. supermassive

. apocalyptic

A bold statement!{fn-disclaimer}

Another outrageous statement.{fn-disclaimer}

200 | Externalizing a footnote

Notice you still get the benefit of seeing where the footnote is placed without all the noise. And
since the footnotes are now defined in the document header, they could be further externalized to
an include file.

This approach works since attribute references are expanded before footnotes are parsed. How­
ever, this technique does not work if you have text formatting markup in the text of the footnote
(e.g., *bold*). That markup will not be interpreted. That’s because the attributes substitution (which
replaces attribute references) is applied after the quotes substitution (which interprets text format­
ting markup). In order to use text formatting markup in the text of the footnote, you need to config­
ure the substitutions on the value of the attribute entry using the pass:[] macro.

The following example demonstrates how to configure the substitutions applied to the text of an
externalized footnote so that text formatting markup is honored.

Example 144. Externalized footnote with text formatting

:fn-disclaimer: pass:c,q[footnote:disclaimer[Opinions are _mine_, and mine *alone*.]]

A bold statement!{fn-disclaimer}

Another outrageous statement.{fn-disclaimer}

The c,q target on the pass macro instructs the processor to apply the special characters substitution
followed by the quotes substitution. That means the text formatting in the footnote text will already
be applied when the footnote is inserted using an attribute reference.

Footnotes in headings
Footnotes are not officially supported in headings (section titles and discrete headings) in pre-
spec AsciiDoc. While the footnote gets parsed, there’s no guarantee that it will work properly and
may require workarounds. This limitation may be lifted once the AsciiDoc Language is defined by
the specification.

If you use a footnote in a heading, you’ll likely find that the footnote index is wrong (either not
incremented or out of order). That’s because headings (section titles and discrete headings) get con­
verted out of document order for the purpose of generating IDs, populating up cross references,
and eagerly resolving attribute references.

The only way to workaround this limitation is by assigning an explicit ID and reftext to any heading
that contains a footnote. For example:

See <<heading>>.

[[heading,Heading]]
== Headingfootnote:[This is a heading with a footnote]

Assigning an explicit ID and reftext to a heading will prevent the heading from being converted
eagerly (thus deferring the footnote substitution) until the heading is rendered. As a result, the foot­

Footnotes in headings | 201

note macro in the heading will be processed in document order.

This workaround will also prevent the footnote number from reappearing in the text of an xref.

Even with this workaround, you still have to avoid using attribute references in the heading as
those also causes the heading to be converted eagerly (which forces substitutions to be applied). If
you use an attribute reference in the heading, the footnotes will be processed out of document
order.

[1] The double hail-and-rainbow level makes my toes tingle.

[2] Opinions are my own.

202 | Footnotes in headings

Images
There are two AsciiDoc image macro types, block and inline. As with all macros, the block and
inline forms differ by the number of colons that follow the macro name. The block form uses two
colons (::), whereas the inline form only uses one (:).

Block image macro
A block image is displayed as a discrete element, i.e., on its own line, in a document. A block image
is designated by image macro name and followed by two colons (::) It’s preceded by an empty line,
entered on a line by itself, and then followed by an empty line.

Example 145. Block image macro

Content in document.

image::sunset.jpg[] ① ②

Content in document

① To insert a block image, type the image macro name directly followed by two colons (::).

② After the colons, enter the image file target. Type a pair of square brackets ([]) directly after the
target to complete the macro.

The result of Example 145 is displayed below.

The target is required. The target may be a relative path or a URL. How the target is interpreted
depends on the processor settings and/or output format. If the converter generates output that ref­
erences the image, the path must be relative to the published document. If the converter embeds
the image in the output document (e.g., inline SVG, data-uri is set, converting to PDF directly), the
target must be resolvable at convert time. In the latter case, a URL will only be resolved if the secu­

Block image macro | 203

rity settings on the processor allows it (e.g., allow-uri-read).

The target may contain space characters. In the HTML output, these spaces will be URL encoded
(i.e., %20).

You can specify a comma-separated list of optional attributes inside the square brackets or leave
them empty. If you want to specify alt text, enter it inside the square brackets.

Example 146. Block image macro with alt text

image::sunset.jpg[Sunset]

If the alt text contains a comma or starts with a valid attribute name followed by an equals sign,
you must enclose the alt text in double quotes. The double quote enclosure effectively escapes the
comma from being interpreted as an attribute separator. See Attribute list parsing to learn how the
attribute list in a macro is parsed.

Example 147. Block image macro with alt text that contains a comma

image::sunset.jpg["Mesa Verde Sunset, by JAVH"]


Although you could enclose the alt text in single quotes to escape the comma,
doing so implicitly enables substitutions. Unless you need substitutions to be
applied to the alt text, prefer using double quotes as the enclosure.

You can also give the image an ID, title, set its dimensions and make it a link.

Example 148. Block image macro with attribute list

.A mountain sunset ①
[#img-sunset,link=https://www.flickr.com/photos/javh/5448336655] ②
image::sunset.jpg[Sunset,200,100] ③ ④

① Defines the title of the block image, which gets displayed underneath the image when rendered.

② Assigns an ID to the block and makes the image a link. The link attribute can also be defined
inside the attribute list of the block macro.

③ The first positional attribute, Sunset, is the image’s alt text.

④ The second and third positional attributes define the width and height, respectively.

The result of Example 148 is displayed below.

204 | Block image macro

Figure 1. A mountain sunset

Figure caption label

When a title is defined on a block image, the image title will be prefixed by a caption label (Figure)
and numbered automatically. To turn off figure caption labels and numbers, unset the figure-cap­
tion attribute in the document header.

= Document Title
:figure-caption!:

Inline image macro
An inline image is displayed in the flow of another element, such as a paragraph or sidebar block.
The inline image macro is almost identical to the block image macro, except its macro name is fol­
lowed by a single colon (:).

Example 149. Inline image macro

Click image:play.png[] to get the party started. ①

Click image:pause.png[title=Pause] when you need a break. ②

① In the flow of an element, enter the macro name and a single colon (image:), followed by the
image target. Complete the macro with a pair of square brackets ([]).

② You can specify a comma-separated list of attributes inside the square brackets or leave them
empty.

The result of Example 149 is displayed below.

Click to get the party started.

Click when you need a break.

The target is required. The target may be a relative path or a URL. How the target is interpreted
depends on the processor settings and/or output format. If the converter generates output that ref­
erences the image, the path must be relative to the published document. If the converter embeds
the image in the output document (e.g., inline SVG, data-uri is set, converting to PDF directly), the
target must be resolvable at convert time. In the latter case, a URL will only be resolved if the secu­
rity settings on the processor allows it (e.g., allow-uri-read).

Inline image macro | 205

https://www.flickr.com/photos/javh/5448336655

The target may contain space characters. In the HTML output, these spaces will be URL encoded
(i.e., %20).

The alt text for an inline image has the same requirements as for a block image, with the added
restriction that a closing square bracket must be escaped.

For inline images, the optional title is displayed as a tooltip.

Set the Images Directory
The path to the location of the image catalog is controlled by the imagesdir attribute.

imagesdir attribute syntax

imagesdir is a document attribute. Its value is automatically added to the beginning of every image
macro target. The resolved location of a image is: <value-of-imagesdir> + <image-macro-target>.
Therefore, you never need to reference this attribute in an image macro. You only need to set it in
your document header.

Example 150. Incorrect

image::{imagesdir}/name-of-image.png[]

Example 151. Correct

image::name-of-image.png[]

The value of imagesdir can be an absolute path, relative path or URL. By default, the imagesdir value
is empty. That means the images are resolved relative to the document. If an image macro’s target is
an absolute path or URL, the value of imagesdir is not added to the target path.

The benefit of the processor adding the value of imagesdir to the start of all image targets is that you
can globally control the folder where images are located per converter. We refer to this folder as
the image catalog. Since different output formats require the images to be stored in different loca­
tions, this attribute makes it possible to accommodate many different scenarios.

We recommend relying on imagesdir when defining the target of your image to avoid hard-coding
that common path in every single image macro. Always think about where the image is relative to
the image catalog.


You can set the imagesdir attribute in multiple places in your document, as long as
it is not locked by the API. This technique is useful if you store images for different
parts, chapters, or sections of your document in different locations.

Insert Images from a URL
You can reference images served from any URL (e.g., your blog, an image hosting service, your

206 | Set the Images Directory

server, etc.) and never have to worry about downloading the images and putting them somewhere
locally.

Image URL targets

Here are a few examples of images that have a URL target:

Example 152. Block image with a URL target

image::https://upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg[Tux,250,350]

Example 153. Inline image with a URL target

You can find
image:https://upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg[Linux,25,35]
everywhere these days.

You can find everywhere these days.

 The value of imagesdir is ignored when the image target is a URL.

If you want to avoid typing the URL prefix for every image, and all the images are located on the
same server, you can use the imagesdir attribute to set the base URL:

Example 154. Using a URL as the base URL for images

:imagesdir-old: {imagesdir}
:imagesdir: https://upload.wikimedia.org/wikipedia/commons

image::3/35/Tux.svg[Tux,250,350]

:imagesdir: {imagesdir-old}

Insert Images from a URL | 207

This time, imagesdir is used since the image target is not a URL (the value of imagesdir just happens
to be one).

Position and Frame Images
Images are a great way to enhance the text, whether to illustrate an idea, show rather than tell, or
just help the reader connect with the text.

Out of the box, images and text behave like oil and water. Images don’t like to share space with text.
They are kind of “pushy” about it. That’s why we focused on tuning the controls in the image
macros so you can get the images and the text to flow together.

There are two approaches you can take when positioning your images:

1. Named attributes

2. Roles

Positioning attributes

AsciiDoc supports the align attribute on block images to align the image within the block (e.g., left,
right or center). The named attribute float can be applied to both the block and inline image
macros. Float pulls the image to one side of the page or the other and wraps block or inline content
around it, respectively.

Here’s an example of a floating block image. The paragraphs or other blocks that follow the image
will float up into the available space next to the image. The image will also be positioned horizon­
tally in the center of the image block.

Example 155. A block image pulled to the right and centered within the block

image::tiger.png[Tiger,200,200,float="right",align="center"]

Here’s an example of a floating inline image. The image will float into the upper-right corner of the
paragraph text.

Example 156. An inline image pulled to the right of the paragraph text

image:linux.png[Linux,150,150,float="right"]
You can find Linux everywhere these days!

When you use the named attributes, CSS gets added inline (e.g., style="float: left"). That’s bad
practice because it can make the page harder to style when you want to customize the theme. It’s
far better to use CSS classes for these sorts of things, which map to roles in AsciiDoc terminology.

Positioning roles

Here are the examples from above, now configured to use roles that map to CSS classes in the
default Asciidoctor stylesheet:

208 | Position and Frame Images

Example 157. Block image macro using positioning roles

[.right.text-center]
image::tiger.png[Tiger,200,200]

Example 158. Inline image macro using positioning role

image:sunset.jpg[Sunset,150,150,role=right] What a beautiful sunset!

The following table lists all the roles available out of the box for positioning images.

Roles for positioning images

Float Align

Role left right text-left text-right text-center

Block Image Yes Yes Yes Yes Yes

Inline Image Yes Yes No No No

Merely setting the float direction on an image is not sufficient for proper positioning. That’s
because, by default, no space is left between the image and the text. To alleviate this problem, we’ve
added sensible margins to images that use either the positioning named attributes or roles.

If you want to customize the image styles, perhaps to customize the margins, you can provide your
own additions to the stylesheet (either by using your own stylesheet that builds on the default
stylesheet or by adding the styles to a docinfo file).

 The shorthand syntax for a role (.) can not yet be used with image styles.

Framing roles

It’s common to frame the image in a border to further offset it from the text. You can style any block
or inline image to appear as a thumbnail using the thumb role (or th for short).


The thumb role doesn’t alter the dimensions of the image. For that, you need to
assign the image a height and width.

Here’s a common example for adding an image to a blog post. The image floats to the right and is
framed to make it stand out more from the text.

image:logo.png[role="related thumb right"] Here's text that will wrap around the image
to the left.

Notice we added the related role to the image. This role isn’t technically required, but it gives the
image semantic meaning.

Position and Frame Images | 209

Control the float

When you start floating images, you may discover that too much content is floating around the
image. What you need is a way to clear the float. That is provided using another role, float-group.

Let’s assume that we’ve floated two images so that they are positioned next to each other and we
want the next paragraph to appear below them.

[.left]
.Image A
image::a.png[A,240,180]

[.left]
.Image B
image::b.png[B,240,180,title=Image B]

Text below images.

When this example is converted, then viewed in a browser, the paragraph text appears to the right
of the images. To fix this behavior, you just need to “group” the images together in a block with self-
contained floats. Here’s how it’s done:

[.float-group]
--
[.left]
.Image A
image::a.png[A,240,180]

[.left]
.Image B
image::b.png[B,240,180]
--

Text below images.

This time, the text will appear below the images where we want it.

Add Link to Image
You can turn an image into a link by using the link attribute.

link attribute

The link attribute on a block or image macro acts as though the image is wrapped in a link macro.
While it’s possible to wrap an inline image macro in a link macro, that combination is not well sup­
ported and may introduce subtle parsing problems. Therefore, you should use the link attribute on
the image macro instead.

210 | Add Link to Image

The value of the link attribute is akin to the target of the link macro. It can point to any URL or rela­
tive path.

For a block image macro, the link attribute can be added to the block attribute line above the
macro or inside the contents of the macro.

[link=https://example.org]
image::logo.png[Logo]

or

image::logo.png[Logo,link=https://example.org]

For an inline macro, the link attribute must be added inside the contents of the macro.

image:apply.jpg[Apply,link=https://apply.example.org] today!

Link controls

When using the link attribute, you can also use the same controls supported by the link macro to
control how the link is constructed. Those controls are as follows:

• window attribute - instructs the browser to open the link in the specified named window

• nofollow option - instructs search engines to not follow the link

• noopener option - instructs the browser to navigate to the target without granting the new
browsing context access to the original document

When the value of window attribute is _blank, the noopener option is automatically enabled.

Here’s an example that shows how to use these controls.

image::logo.png[Logo,link=https://example.org,window=_blank,opts=nofollow]

Refer to the Target a separate window section in the link macro documentation for more informa­
tion about how these link controls work.

Adjust Image Sizes
Since images often need to be sized according to the medium, there are several ways to specify an
image size.

In most output formats, the specified width is obeyed unless the image would exceed the content
width or height, in which case it scaled to fit while maintaining the original aspect ratio (i.e.,
responsive scaling).

Adjust Image Sizes | 211

width and height attributes

The primary way to specify the size of an image is to define the width and height attributes on the
image macro. Since these two attributes are so common, they’re mapped as the second and third
(unnamed) positional attributes on both image macros.

image::flower.jpg[Flower,640,480]

That’s equivalent to the long-hand version:

image::flower.jpg[alt=Flower,width=640,height=480]

The value of the width and height attributes should be an integer without a unit. The px unit is
implied. Although the processor may allow it, you should never rely on a % value. While the % unit
was supported in older versions of HTML, it was removed starting in HTML 5. If you need to specify
a % value for PDF or DocBook output, use pdfwidth or scaledwidth, respectively. To scale the image
relative to the content area in HTML output, use a role.

While the values of width and height can be used to scale the image, these attributes are primarily
intended to specify the intrinsic size of the image in CSS pixels. The width and height attributes are
mapped to attributes of the same name on the element in the HTML output. These attributes
are important because they provide a hint to the browser to tell it how much space to reserve for
the image during layout to minimize page reflows. The height attribute should only be specified if
the width attribute is also specified, and it should respect the aspect ratio of the image.

Automatic image scaling

The default Asciidoctor stylesheet implements responsive images (using width-wise scaling).
If the width of the content area is smaller than the width of the image, the image will be
scaled down to fit. To support this feature, the intrinsic aspect ratio of the image is preserved
at all sizes.

Thus, when specifying the image’s dimensions, you should choose values that honor the
intrinsic aspect ratio of the image. If the values don’t respect the aspect ratio, the height is
ignored by the browser.

pdfwidth attribute

AsciiDoc recognizes the following attributes to size images when converting to PDF using Asciidoc­
tor PDF:

• pdfwidth - The preferred width of the image in the PDF when converting using Asciidoctor PDF.

The pdfwidth attribute accepts the following units:

px Output device pixels (assumed to be 96 dpi)

212 | Adjust Image Sizes

https://www.w3.org/TR/2014/REC-html5-20141028/embedded-content-0.html#dimension-attributes

pt (or none) Points (1/72 of an inch)

pc Picas (1/6 of an inch)

cm Centimeters

mm Millimeters

in Inches

% Percentage of the content width (area between margins)

vw Percentage of the page width (edge to edge)

iw Percentage of the intrinsic width of the image

If pdfwidth is not provided, Asciidoctor PDF also accepts scaledwidth, or width (no units, assumed to
be pixels), in that order. See image scaling in Asciidoctor PDF for more details.

scaledwidth attribute

AsciiDoc recognizes the following attributes to size images when converting to DocBook or when
converting to PDF using Asciidoctor PDF. The scaledwidth attribute is ignored by other converters.

• scaledwidth - The preferred width of the image when converting to PDF using the DocBook tool­
chain. (Mutually exclusive with scale).

• scale - Scales the original image size by this amount when converting to PDF using the DocBook
toolchain. (Mutually exclusive with scaledwidth).

scaledwidth sizes images much like pdfwidth, except it does not accept the vw unit.

The value of scaledwidth when used with DocBook can have the following units:

px Output device pixels (assumed to be 72 dpi)

pt Points (1/72 of an inch)

pc Picas (1/6 of an inch)

cm Centimeters

mm Millimeters

in Inches

em Ems (current font size)

% (or no units) Percentage of the content width (area between margins)

The scaledwidth attribute in AsciiDoc is mapped to the width attribute on the imagedata tag in Doc­
Book, whereas the width attribute in AsciiDoc is mapped to the contentwidth attribute on the image­
data tag in DocBook. If both the width and scaledwidth attributes are specified in AsciiDoc, the

Adjust Image Sizes | 213

https://docs.asciidoctor.org/pdf-converter/latest/image-scaling/

scaledwidth tags precedence, so the DocBook output will only have the width attribute.

Image sizing recap

Image sizing attributes

Backend Absolute size Relative to original size Relative to content
width

Relative to page
width

html width=120
(assumed to be
px)

Not possible role=half-width role=half-view-
width

pdf pdfwidth=100m
m
(or cm, in, pc, pt,
px)

Not possible
(support for the scale
attribute is pending)

pdfwidth=80% pdfwidth=50vw

docbook,
pdf

scaled­
width=100mm
(or cm, em, in,
pc, pt, px)

scale=75 scaledwidth=50% Not possible

Here’s an example of how you might bring these attributes together to control the size of an image
in various output formats:

image::flower.jpg[Flower,640,480,pdfwidth=50%,scaledwidth=50%]

If the cascading behavior of the sizing attributes does not work for your use case, you might con­
sider a document attribute to set the attribute that is suitable for the backend you are using. Con­
sider the following example:

ifdef::backend-html5[]
:twoinches: width=144
// using a role requires adding a corresponding rule to the CSS
:full-width: role=full-width
:half-width: role=half-width
:half-size: role=half-size
:thumbnail: width=60
endif::[]
ifdef::backend-pdf[]
:twoinches: pdfwidth=2in
// NOTE use pdfwidth=100vw to make the image stretch edge to edge
:full-width: pdfwidth=100%
:half-width: pdfwidth=50%
// NOTE scale is not yet supported by the PDF converter
:half-size: pdfwidth=50%
:thumbnail: pdfwidth=20mm
endif::[]
ifdef::backend-docbook5[]

214 | Adjust Image Sizes

:twoinches: scaledwidth=2in
:full-width: scaledwidth=100%
:half-width: scaledwidth=50%
:half-size: scale=50
:thumbnail: scaledwidth=20mm
endif::[]

Then you can specify the image to be half the width of the content area using the following syntax:

image::image.jpg[{half-width}]

In addition to providing consistency across your document, this technique will help insulate you
from future changes. For a more detailed example, see this thread on the discussion list.

Specify Image Format
Although to a reader, an image is just an image, different image formats must be processed differ­
ently by the converter in order to be referenced by or embedded in the output format. Some image
formats, such as SVG, even activate additional behavior. On this page, you learn how an AsciiDoc
processor determines the format of an image and how it can be specified explicitly using the format
attribute if the format cannot be determined.

Automatic image format

Most of the time, the image format can be determined from the file extension (e.g., .svg) of the tar­
get. Here’s an example that shows an image target that has a file extension:

image::avatar.svg[]

In this case, the converter can determine that this is an SVG image based on the file extension .svg.
So the author does not need to specify the image format. The author only needs to specify the for­
mat when the image format cannot be determined.

format attribute

When the file extension is not present, or—in the case of a URL—not in its usual place, the author
must specify the image format explicitly. The format attribute on a block or inline image macro can
be used to specify the format of an image.

image::https://example.org/avatar[format=svg]

In this case, the converter would not be able to determine that this is an SVG image because the tar­
get has no file extension. But since the author has specified format=svg, the converter can recognize
this as an SVG image.

Specify Image Format | 215

https://discuss.asciidoctor.org/Unit-of-measure-for-image-dimensions-td3040.html#a3222

Here are few cases when the image format cannot be determined automatically:

• the target does not have a file extension

• the target is using an unrecognized file extension

• the target is a URL that contains a query string (thus hiding the file extension)

The value of the format attribute is the sub-MIME type (the part after the forward slash) (e.g., png
for a PNG image). One exception to this rule is the format for SVG, which is specified as svg instead
of svg+xml. You can find a list of common image formats along with their MIME type values on the
image file type and format guide page.

When is the format used?

There are several scenarios when a converter almost always needs to know the image format. One
is to distinguish an SVG target. Another is to convert the image to a data URI. Yet another is when a
converter must reencode the image.

AsciiDoc recognizes extra settings for SVG images, such as how to include it in the HTML output and
whether to provide a fallback image. If the converter needs to read and process the file, it often
must use a different library to process an SVG since the contents of an SVG is an XML document. So
being able to recognize an SVG target is essential for almost any converter.

If the data-uri attribute is set on the document, an AsciiDoc processor must convert the image to a
data URI. To start, the data URI for an SVG differs from a data URI for any other format. But even
when creating a data URI for a non-SVG, the MIME type of that image must be included in the data
URI, in which case the image format must be known.

Some converters, such as a PDF converter, have to reencode the image data. This means the con­
verter must parse the image data, which may require loading an additional library. Doing that pro­
cessing almost certainly requires knowing the format of the image. It also provides an opportunity
for the converter to inform the author whether the image uses a format that cannot be processed.

As you can see, while the image format not always needed, it’s needed often enough that you
should specify the format if it’s not apparent from the file extension of the target.

SVG Images
Both block and inline image macros have built-in support for scalable vector graphics (SVGs). But
there’s more than one way to include an SVG into a web page, and the strategy used can affect how
the SVG behaves (or misbehaves). Therefore, these macros provide additional options to control
how the SVG is included (i.e., referenced).

SVG dimensions

The viewBox attribute on the root <svg> element is required. The viewBox establishes the coordi­
nate space on to which x and y values inside the SVG data are placed. Without this information,
converters cannot properly interpret the SVG data and translate it to the canvas.

216 | SVG Images

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types

We strongly recommend not using the width and height attributes on the root <svg> element. You
will find that SVGs that only specify a viewBox work best in a document. That’s because the SVG
data itself is infinitely scalable. By assigning an explicit width and height, you may end up limiting
how the SVG can be sized or positioned in the document. It’s better to specify the width (or similar,
such as pdfwidth) on the image macro instead, or using CSS.

You particularly want to avoid using a percentage width, such as width="100%". According to the SVG
spec, this means using all available space, but without altering the aspect ratio. As a result, you can
get a large gap above and below the SVG in page-oriented media, such as PDF. If you do specify a
width and height, at least make sure the values are fixed and that they respect the aspect ratio of
the data.

Options for SVG images

When the image target is an SVG, the options attribute (often abbreviated as opts) on the macro
accepts one of the following values to control how the SVG is referenced:

• none (default)

• interactive

• inline

The following table demonstrates the impact these options have.

Demonstration of option values for SVG images

image::sample.svg[Static,300]

Observe that the SVG does not respond to the
hover event.

image::sample.svg[Interactive,300,opts=interactive]

Observe that the color changes when hovering
over the SVG.

image::sample.svg[Embedded,300,opts=inline]

Observe that the color changes when hovering
over the SVG. The SVG also inherits CSS from the
document stylesheets.

How these options values work and when each should be used is described below:

Option values that control how an SVG image is referenced in the HTML output

SVG Images | 217

Option HTML Ele­
ment Used

Effect When To Use

none
(default
)

 Image is rasterized Static image, no interactivity, no custom fonts

inter­
active

<object> Image embedded as a
live, interactive object

For using CSS animations, scripting, webfonts, or
when you want to specify a fallback image

inline <svg> The SVG is embedded
directly into the HTML
itself

For using CSS animations, scripting, webfonts,
when you require search engines to search the
SVG content

To allow SVG content reachable by JavaScript in
the main DOM or to inherit styles from the main
DOM

When using the interactive option, you can specify a fallback image using the fallback attribute.
The fallback image is used if the browser does not support the <object> tag. If the value of the fall­
back attribute is a relative path, it will be prefixed with the value of the imagesdir document
attribute.

When using the inline or interactive options, the viewBox attribute must be defined on the root
<svg> element in order for scaling to work properly.

When using the inline option, if you specify a width or height on the image macro in AsciiDoc, the
width, height and style attributes on the <svg> element will be removed. Additionally, when using
inline the primary SVG elements (e.g., <svg>) cannot have a namespace.

If using the interactive option, you must link to the CSS that declares the fonts in the SVG file using
an XML stylesheet declaration.

If you’re inserting an SVG using either the inline or interactive options, we strongly recommend
you optimize your SVG using a tool like svgo or SVG Editor.

As you work with SVG, you’ll become more comfortable making the decision about which method
to employ given the circumstances. It’s only confusing when you first encounter the choice. To
learn more about using SVG on the web, consult the online book SVG on the Web: A Practical Guide
as well as these articles about SVG.

Images Reference
Document attributes and values

218 | Images Reference

https://github.com/svg/svgo
https://petercollingridge.appspot.com/svg-editor
https://svgontheweb.com/
https://www.sarasoueidan.com/tags/svg/

Attribute Value(s) Example Syntax Comments

imagesdir empty, filesystem
path, or base URL

:imagesdir: images Added in front of a relative
image target, joined using a
file separator if needed. Not
used if the image target is an
absolute URL or path.
Default value is empty.

Block and inline image attributes and values

Attribute Value(s) Example Syntax Comments

id User defined text id=sunset-img
(or [[macros:image-
ref:::sunset-img]] or [#sun­
set-img] above block macro)

alt User defined text
in first position of
attribute list or
named attribute

image::sunset.jpg[Brilliant
sunset]
(or alt=Sunset)

fallback Image path rela­
tive to imagesdir
or an absolute
path or URL

image::tiger.svg[fall­
back=tiger.png]

Only applicable if target is
an SVG and opts=interactive

title User defined text in attrlist: title="A mountain
sunset" (enclosing quotes
only required if value con­
tains a comma)
above block macro: .A moun­
tain sunset

Blocks: title displayed below
image
Inline: title displayed as
tooltip

format The format of the
image, specified as
a sub-MIME type
(except in the case
of an SVG, which
is specified as svg).

format=svg Only necessary when the
converter needs to know the
format of the image and the
target does not end in a file
extension (or otherwise can­
not be detected).

caption User defined text caption="Figure 8: " Only applies to block
images.

width User defined size
in pixels

image::sunset.jpg[Sun­
set,300]
(or width=300)

height User defined size
in pixels

image::sunset.jpg[Sun­
set,300,200]
(or height=200)

The height should only be
set if the width attribute is
set and must respect the
aspect ratio of the image.

Images Reference | 219

Attribute Value(s) Example Syntax Comments

link User defined loca­
tion of external
URI

link=https://www.flickr.com
/photos/javh/5448336655

window User defined win­
dow target for the
link attribute

window=_blank

scale A scaling factor to
apply to the intrin­
sic image dimen­
sions

scale=80 DocBook only

scaledwidth User defined
width for block
images

scaledwidth=25% DocBook and Asciidoctor
PDF only

pdfwidth User defined
width for images
in a PDF

pdfwidth=80vw Asciidoctor PDF only

align left, center, right align=left Block images only. align and
float attributes are mutu­
ally exclusive.

float left, right float=right Block images only. float and
align attributes are mutu­
ally exclusive. To scope the
float, use a float group.

role user-defined, left,
right, th, thumb,
related, rel

role="thumb right"
(or [.thumb.right] above
block macro)

The role is preferred to spec­
ify the float position for an
image. Role shorthand (.)
can only be used in block
attribute list above a block
image.

imagesdir empty, filesystem
path, or base URL

imagesdir=ch1/images Overrides the imagesdir set
on the document. If not
specified, the imagesdir from
the document is used. (Not
supported until Asciidoctor
2.1).

opts Additional options
for link creation
and SVG targets.

image::sunset.jpg[Sunset,
link=https://example.org,
opts=nofollow]

image::chart.svg[opts=inlin
e]

Option names include:
nofollow, noopener, inline
(SVG only), interactive (SVG
only)

220 | Images Reference

Audio and Video

Audio macro syntax
The block audio macro enables you to embed audio streams into your documentation. You can
embed self-hosted audio files that are supported by the browser.

The audio formats AsciiDoc supports is dictated by the output format, such as the formats sup­
ported by the browser when generating HTML. While this was once a precarious ordeal, HTML 5
has brought sanity to audio support in the browser by adding a dedicated <audio> element and by
introducing several standard audio formats. Those formats are now widely supported across
browsers and systems.

For a canonical list of supported web audio formats and their interaction with modern browsers,
see the Mozilla Developer Supported Media Formats documentation.

Example 159. Basic audio file include

audio::ocean-waves.wav[]

You can control the audio settings using additional attributes on the macro. For instance, you can
offset the start time of playback using the start attribute and enable autoplay using the autoplay
option.

Example 160. Set attributes for local audio playback

audio::ocean-waves.wav[start=60,opts=autoplay]

You can include a caption above the audio using the title attribute.

Example 161. Add a caption to the audio

.Take a zen moment
audio::ocean-waves.wav[]

Video macro syntax
The block video macro enables you to embed videos into your documentation. You can embed self-
hosted videos or videos shared on popular video hosting sites such as Vimeo and YouTube.

The video formats AsciiDoc supports is dictated by the output format, such as the formats sup­
ported by the browser when generating HTML. While this was once a precarious ordeal, HTML 5
has brought sanity to video support in the browser by adding a dedicated <video> element and by
introducing several standard video formats. Those formats are now widely supported across
browsers and systems.

For a canonical list of supported web video formats and their interaction with modern browsers,

Audio macro syntax | 221

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video

see the Mozilla Developer Supported Media Formats documentation.

A recommendation for serving video to browsers

Where appropriate, we recommend using a video hosting service like Vimeo or YouTube to
serve videos in online documentation. These services specialize in streaming optimized video
to the browser, with the lowest latency possible given hardware, software, and network capa­
bilities of the device viewing the video.

Vimeo even offers a white label mode so users aren’t made aware that the video is being
served through its service.

See Vimeo and YouTube videos for details about how to serve videos from these services.

Example 162. Basic video file include

video::video-file.mp4[]

You can control the video settings using additional attributes on the macro. For instance, you can
offset the start time of playback using the start attribute and enable autoplay using the autoplay
option.

Example 163. Set attributes for local video playback

video::video-file.mp4[width=640,start=60,opts=autoplay]

You can include a caption on the video using the title attribute.

Example 164. Add a caption to a video

.A walkthrough of the product
video::video-file.mp4[]

Vimeo and YouTube videos

The video macro supports embedding videos from external video hosting services like Vimeo and
YouTube. The AsciiDoc processor, specifically the converter, automatically generates the correct
code to embed the video in the HTML output.


In order for an embedded YouTube video to work in Firefox when viewing the
generated HTML document through the file: protocol, you must set secu­
rity.fileuri.strict_origin_policy on the about:config settings page to false.

To use this feature, put the video ID in the macro target and the name of the hosting service in the
first positional attribute.

222 | Video macro syntax

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats#Browser_compatibility

Example 165. Embed a Vimeo video

video::67480300[vimeo]

Example 166. Embed a YouTube video

video::RvRhUHTV_8k[youtube]

When embedding a YouTube video, you can specify a playlist to associate with the video using the
list attribute. The playlist must be specified by its ID.

Example 167. Embed a YouTube video with a playlist

video::RvRhUHTV_8k[youtube,list=PLDitloyBcHOm49bxNhvGgg0f9NRZ5lSaP]

Instead of using the list attribute, you can specify the ID of the playlist after the video ID in the tar­
get, separated by a slash.

Example 168. Embed a YouTube video with a playlist in the target

video::RvRhUHTV_8k/PLDitloyBcHOm49bxNhvGgg0f9NRZ5lSaP[youtube]

Alternatively, you can create a dynamic, unnamed playlist by listing several additional video IDs in
the playlist attribute.

Example 169. Embed a YouTube video with a dynamic playlist

video::RvRhUHTV_8k[youtube,playlist="_SvwdK_HibQ,SGqg_ZzThDU"]

Instead of using the playlist attribute, you can create a dynamic, unnamed playlist by listing sev­
eral video IDs in the target separated by a comma.

Example 170. Embed a YouTube video with a dynamic playlist in the target

video::RvRhUHTV_8k,_SvwdK_HibQ,SGqg_ZzThDU[youtube]

Audio and video attributes and options
Audio attributes and values

Attribute Value(s) Example Syntax Notes

title User defined text .Ocean waves

start User-defined playback start time in
seconds.

start=30

Audio and video attributes and options | 223

Attribute Value(s) Example Syntax Notes

end User-defined playback end time in
seconds.

end=90

options
(opts)

autoplay, loop, controls, nocontrols opts="auto­
play,loop"

The controls value is enabled
by default

Video attributes and values

Attrib
ute

Value(s) Example Syn­
tax

Notes

title User defined text .An ocean sun­
set

poster A URL to an image to show
until the user plays or
seeks.

poster=sun­
set.jpg

Can be specified as the first positional
(unnamed) attribute. Also used to specify the
service when referring to a video hosted on
Vimeo (vimeo) or YouTube (youtube).

width User-defined size in pixels. width=640 Can be specified as the second positional
(unnamed) attribute.

height User-defined size in pixels. height=480 Can be specified as the third positional
(unnamed) attribute.

start User-defined playback start
time in seconds.

start=30

end User-defined playback end
time in seconds.

end=90

theme The YouTube theme to use
for the frame.

theme=light Valid values are dark (the default) and light.

lang The language used in the
YouTube frame.

lang=fr A BCP 47 language tag (typically a two-letter
language code, like en).

list The ID of a playlist to asso­
ciate with a YouTube video.

list=PLabc123 Only applies to YouTube videos.

playli
st

Additional video IDs to cre­
ate a dynamic YouTube
playlist.

playlist="vide
o-abc,video-
xyz"

IDs must be separated by commas. Therefore,
the value must be enclosed in double quotes.
Only applies to YouTube videos.

align left, center, right align=center Follows the same alignment rules as a block
image.

option
s (opts)

autoplay, loop, modest,
nocontrols, nofullscreen,
muted

opts="auto­
play,loop"

The controls are enabled by default. The mod­
est option enables modest branding for a
YouTube video.

224 | Audio and video attributes and options

Icons
Icons are a useful way to communicate information visually while at the same time eliminating text
that can distract from the primary text. Icons also have the benefit of adding some flair to your doc­
ument. In AsciiDoc, there are numerous ways to embellish the output of your document with icons
(for backends that support this feature).

For some elements, icons are added automatically by the processor when enabled, such as the
admonition icons. You can also add icons directly to the content using special markup.

This section shows you how to enable icons, covers the various icon modes, and introduces you to
the icon macro for adding custom icons to your content.

Enable icons
There are three icon modes: text, image, and font.

The inclusion of icons in the output is controlled using the icons document attribute. By default, this
attribute is not set. As a result, all icons are displayed as text. In the text icon mode, icons are effec­
tively disabled.

To enable icons, set the icons attribute in the document header.

= Document Title
:icons:

Valid values for the icons attribute are as follows:

image (or empty)

Icons resolve to image files in the directory specified by the iconsdir attribute.

font

Icons are loaded from an icon font (like Font Awesome). Not all backends support this mode,
such as DocBook.

Where icons are used
Setting the icon attribute turns on icons in the following locations:

• The admonition label is replaced with an icon (i.e., admonition icons)

• The icon macro

• Callout numbers

The following pages will cover these icon modes in more depth.

Enable icons | 225

Image Icons Mode
Setting the icons attribute to image (or leaving it empty) instructs the AsciiDoc processor to use
images for icons. This page defines where the processor looks for these image files by default,
which image file extension it prepends, and how to configure both.

Enable image-based icons

To enable image-based icons, you set the icons attribute in the document header to the value image.

= Document Title
:icons: image

This setting has no affect on the parsing of the AsciiDoc document. It only influences the output
generated by the converters.

Default icons directory and type

By default, the AsciiDoc processor will look for icons in the icons directory relative to the value of
the imagesdir attribute. If you have not configured either attribute, that path resolves to
./images/icons.

The processor won’t look for icons of any type (i.e., format). Instead, it will look for icons that have
the .png file extension.

Let’s assume you have the following NOTE admonition block in your document:

NOTE: Remember the milk!

The AsciiDoc processor will resolve the admonition icon to ./images/icons/note.png.

Configure the icons directory using iconsdir

To change where the AsciiDoc processor looks for icons, you can specify a different location using
the iconsdir attribute.

For example:

= Document Title
:icons: image
:iconsdir: icons

When converting this document, the AsciiDoc processor will look for images in the icons directory
instead of the default ./images/icons.

226 | Image Icons Mode

Configure the icon type using icontype

If the icon path is derived, such as for an admonition icon or if the target of the icon macro does not
have a file extension, the AsciiDoc processor will use the icontype attribute to determine which
image type (i.e., format) to look for. By default, the value of this attribute is png, so the processor will
look for an image with the file extension .png.

You can use the icontype document attribute to configure the default icon type.

For example:

= Document Title
:icons: image
:icontype: svg

For NOTE admonitions, the AsciiDoc processor will now look for the image note.svg in the iconsdir
instead of note.png.

The value of the icontype attribute is ignored for the icon macro if the target has a file extension.
It’s only used when the icon type must be inferred.

Font Icons Mode
Setting the icons attribute to font instructs the AsciiDoc processor to select icons from an icon font.


Not all converters support this mode. If a converter does not support this mode, it
will fall back to the image mode.

Enable font-based icons

To enable image-based icons, you set the icons attribute in the document header to the value font.

= Document Title
:icons: font

This setting has no affect on the parsing of the AsciiDoc document. It only influences the output
generated by the converters.


When converting to HTML, the stylesheet is required in order for the font-based
icons to work.

Default icon font

The icon font that is used by default is determined by the processor. Asciidoctor, for example, uses
the Font Awesome icon font. You can see the available icons in Font Awesome on the Font Awesome
icons page. Using the Font Awesome icons in Asciidoctor requires online access by default.

Font Icons Mode | 227

https://fontawesome.com/v4/icons/
https://fontawesome.com/v4/icons/

Default admonition icons

Since the names of admonitions doesn’t necessarily match the names of icons in the icon font, the
AsciiDoc processor must map admonition CSS classes to icon names.

When using Font Awesome as the icon set, the following mappings are recommended:

• note → info-circle

• tip → lightbulb-o

• warning → warning

• caution → fire

• important → exclamation-circle

Callout numbers and font icon mode

In the font icon mode, callout numbers are displayed as enclosed numbers. However, the icon font
is not used to render these glyphs. Instead, they are styled this way using CSS. This is done to allow
the range of callout numbers to be open-ended.

Icon Macro
In addition to built-in icons, you can add icons anywhere in your content where macros are substi­
tuted using the icon macro. This page covers the anatomy of the icon macro, how the target is
resolved, and what features it support (subject to the icon mode).

Anatomy

The icon macro is an inline macro. Like other inline macros, its syntax follows the familiar pattern
of the macro name and target separated by a colon followed by an attribute list enclosed in square
brackets.

icon:<target>[<attrlist>]

The <target> is the icon name or path. The <attrlist> specifies various named attributes to config­
ure how the icon is displayed.

For example:

icon:heart[2x,role=red]

Example

Here’s an example that shows how to inserts an icon named tags in front of a list of tag names.

228 | Icon Macro

icon:tags[] ruby, asciidoctor

Here’s how the HTML converter converts an icon macro when the icons attribute is not set or
empty.

Example 171. Result: HTML output

<div class="paragraph">
 <p> ruby,
asciidoctor</p>
</div>

Here’s how the DocBook converter converts an icon macro.

<inlinemediaobject>
 <imageobject>
 <imagedata fileref="./images/icons/tags.png"/>
 </imageobject>
 <textobject><phrase>tags</phrase></textobject>
</inlinemediaobject> ruby, asciidoctor

When the image for an icon can’t be located in the icons directory, the AsciiDoc processor displays
the icon macro’s alt (i.e. fallback) text.

How the icon is resolved

The target of the icon macro is an icon name (or path). How that target is resolved depends on the
icon mode assigned to the icons attribute.

text

The icon name will be enclosed in square brackets (e.g., [heart]).

image

The icon name will be resolved to a file in the iconsdir with the file extension specified by icon­
type (e.g., ./images/icons/heart.png).

font

The icon name will be resolved to a glyph in an icon font (as mapped by a CSS class) (e.g., fa fa-
heart).


If you include a file extension in the image target, the icon macro will not work
correctly when using the font icon mode (i.e., icons=font).

Icon macro attributes (shared)

The following attributes of the icon macro are shared for all icon modes.

Icon Macro | 229

role

The role applied to the element that surrounds the icon.

title

The title of the image displayed when the mouse hovers over it.

link

The URI target used for the icon, which will wrap the converted icon in a link.

window

The target window of the link (when the link attribute is specified).

Role

Here’s an example of an icon that uses a role to specify the color.

icon:tags[role=blue] ruby, asciidoctor

Link and window

Here’s an example of an icon with a link that targets a separate window:

icon:download[link=https://rubygems.org/downloads/whizbang-1.0.0.gem, window=_blank]

Icon macro attributes (image mode only)

The attributes listed below only apply when using the image icon mode.

alt

The alternative text on the element (HTML output) or text of <inlinemediaobject> element
(DocBook output)

width

The width applied to the image.

For example, here’s how to control the icon alt text and width when using the image icon mode:

icon:tags[Tags,width=16] ruby, asciidoctor

The icon macro doesn’t support any options to change its physical position (such as alignment).

Icon macro attributes (font mode only)

The icon macro has a few attributes that modify the size and orientation of a font-based icon. These
attributes are only recognized in the font icon mode.

230 | Icon Macro

size

First positional attribute; scales the icon; values: 1x (default), 2x, 3x, 4x, 5x, lg, fw

rotate

Rotates the icon; values: 90, 180, 270

flip

Flips the icon; values: horizontal, vertical

Size

To make the icon twice the size as the default, enter 2x inside the square brackets.

icon:heart[2x]

or

icon:heart[size=2x]



If you want to line up icons so that you can use them as bullets in a list, use the fw
size as follows:

[%hardbreaks]
icon:bolt[fw] bolt
icon:heart[fw] heart

Rotate and flip

To rotate and flip an icon, specify these options using named attributes:

icon:shield[rotate=90, flip=vertical]

Icon Macro | 231

Keyboard Macro
The keyboard macro allows to create a reference to a key or key sequence on a keyboard. You can
use this macro when you need to communicate to a reader what key or key sequence to press to
perform a function.



In order to use the UI macros, you must set the experimental document attribute.
Although this attribute is named experimental, the UI macros are considered a sta­
ble feature of the AsciiDoc language. The requirement to specify the attribute is
merely an optimization for the processor. If the specification committee deter­
mines that an attribute is still necessary, the name of the attribute will likely
change to better reflect that the macros are integral to the language.

Keyboard macro syntax
The keyboard macro uses the short (no target) macro syntax kbd:[key(+key)*]. Each key is dis­
played as entered in the document. Multiple keys are separated by a plus (e.g., Ctrl+T) or a comma
(e.g., Ctrl,T). The plus is preferred.

It’s customary to represent alpha keys in uppercase, though this is not enforced.

If the last key is a backslash (\), it must be followed by a space. Without this space, the processor
will not recognize the macro. If one of the keys is a closing square bracket (]), it must be preceded
by a backslash. Without the backslash escape, the macro will end prematurely. You can find exam­
ple of these cases in the example below.

Example 172. Using the keyboard macro syntax

|===
|Shortcut |Purpose

|kbd:[F11]
|Toggle fullscreen

|kbd:[Ctrl+T]
|Open a new tab

|kbd:[Ctrl+Shift+N]
|New incognito window

|kbd:[\]
|Used to escape characters

|kbd:[Ctrl+\]]
|Jump to keyword

|kbd:[Ctrl + +]
|Increase zoom

232 | Keyboard macro syntax

|===

The result of Example 172 is displayed below.

Shortcut Purpose

F11 Toggle fullscreen

Ctrl  +  T Open a new tab

Ctrl  +  Shift  +  N New incognito window

\ Used to escape characters

Ctrl  + ] Jump to keyword

Ctrl  +  + Increase zoom

Keyboard macro syntax | 233

Button and Menu UI Macros



In order to use the UI macros, you must set the experimental document attribute.
Although this attribute is named experimental, the UI macros are considered a sta­
ble feature of the AsciiDoc language. The requirement to specify the attribute is
merely an optimization for the processor. If the specification committee deter­
mines that an attribute is still necessary, the name of the attribute will likely
change to better reflect that the macros are integral to the language.

Button macro syntax
It can be difficult to communicate to the reader that they need to press a button. They can’t tell if
you are saying “OK” or they are supposed to look for a button labeled OK. It’s all about getting the
semantics right. The btn macro to the rescue!

Example 173. Using the button macro syntax

Press the btn:[OK] button when you are finished.

Select a file in the file navigator and click btn:[Open].

The result of Example 173 is displayed below.

Press the [ OK ] button when you are finished.

Select a file in the file navigator and click [ Open ].

Menu macro syntax
Trying to explain how to select a menu item can be a pain. With the menu macro, the symbols do the
work.

Example 174. Using the menu macro syntax

To save the file, select menu:File[Save].

Select menu:View[Zoom > Reset] to reset the zoom level to the default setting.

The instructions in Example 174 appear below.

To save the file, select File › Save.

Select View › Zoom › Reset to reset the zoom level to the default setting.

234 | Button macro syntax

If the menu has more than one item, it can be expressed using a shorthand.


The shorthand syntax for menu is not on a standards track. You can use it for tran­
sient documents, but do not rely on it long term.

In the shorthand syntax:

• each item is separated by a greater than sign (>) with spaces on either side

• the whole expression must be enclosed in double quotes (")

The text of the item itself may contain spaces.

Example 175. Using the shorthand menu syntax

Select "Zoom > Reset" to reset the zoom level.

The shorthand syntax can be escaped by preceding the opening double quote with a backslash
character.

Both the menu macro and menu shorthand require the first menu item start with a word character
(alphanumeric character or underscore) or ampersand (to accommodate a character reference). If
you need the first menu item to start with a non-word character, you will need to substitute it with
the equivalent character reference. For example, to make a menu item that starts with vertical
ellipsis, you must use ⋮.

Example 176. Using a character reference at the start of the menu

Select "⋮ > More Tools > Extensions" to find and enable extensions.

Subsequent menu items don’t have this requirement and thus can start with any character.

Menu macro syntax | 235

Admonitions
There are certain statements you may want to draw attention to by taking them out of the content’s
flow and labeling them with a priority. These are called admonitions. This page introduces you to
admonition types AsciiDoc provides, how to add admonitions to your document, and how to
enhance them using icons or emoji.



The examples on this page (and in these docs) use a visual theme that differs from
the style provided by AsciiDoc processors such as Asciidoctor. The AsciiDoc lan­
guage does not require that the admonitions be rendered using a particular style.
The only requirement is that they be offset from the main text and labeled appro­
priately according to their admonition type.

Admonition types
The rendered style of an admonition is determined by the assigned type (i.e., name). The AsciiDoc
language provides five admonition types represented by the following labels:

• NOTE

• TIP

• IMPORTANT

• CAUTION

• WARNING

The label is specified either as the block style or as a special paragraph prefix. The label becomes
visible to the reader unless icons are enabled, in which case the icon is shown in its place.

Caution vs. Warning

When choosing the admonition type, you may find yourself getting confused between “cau­
tion” and “warning” as these words are often used interchangeably. Here’s a simple rule to
help you differentiate the two:

• Use CAUTION to advise the reader to act carefully (i.e., exercise care).

• Use WARNING to inform the reader of danger, harm, or consequences that exist.

The word caution in this context translates into attention in French, which is often a good ref­
erence for how it should be applied.

To find a deeper analysis, see www.differencebetween.com/difference-between-caution-and-
vs-warning/.

236 | Admonition types

https://www.differencebetween.com/difference-between-caution-and-vs-warning/
https://www.differencebetween.com/difference-between-caution-and-vs-warning/

Admonition syntax
When you want to call attention to a single paragraph, start the first line of the paragraph with the
label you want to use. The label must be uppercase and followed by a colon (:).

Example 177. Admonition paragraph syntax

WARNING: Wolpertingers are known to nest in server racks. ① ②
Enter at your own risk.

① The label must be uppercase and immediately followed by a colon (:).

② Separate the first line of the paragraph from the label by a single space.

The result of Example 177 is displayed below.

 Wolpertingers are known to nest in server racks. Enter at your own risk.

When you want to apply an admonition to compound content, set the label as a style attribute on a
block. As seen in the next example, admonition labels are commonly set on example blocks. This
behavior is referred to as masquerading. The label must be uppercase when set as an attribute on
a block.

Example 178. Admonition block syntax

[IMPORTANT] ①
.Feeding the Werewolves
==== ②
While werewolves are hardy community members, keep in mind the following dietary
concerns:

. They are allergic to cinnamon.

. More than two glasses of orange juice in 24 hours makes them howl in harmony with
alarms and sirens.
. Celery makes them sad.
====

① Set the label in an attribute list on a delimited block. The label must be uppercase.

② Admonition styles are commonly set on example blocks. Example blocks are delimited by four
equal signs (====).

The result of Example 178 is displayed below.



Feeding the Werewolves

While werewolves are hardy community members, keep in mind the following
dietary concerns:

1. They are allergic to cinnamon.

2. More than two glasses of orange juice in 24 hours makes them howl in har­

Admonition syntax | 237

mony with alarms and sirens.

3. Celery makes them sad.

Enable admonition icons
In the examples above, the admonition is rendered in a callout box with the style label in the gutter.
You can replace the textual labels with font icons by setting the icons attribute on the document
and assigning it the value font.

Example 179. Admonition paragraph with icons set

= Document Title
:icons: font

WARNING: Wolpertingers are known to nest in server racks.
Enter at your own risk.

Learn more about using Font Awesome or custom icons with admonitions in Font Icons Mode.

Using emoji for admonition icons
If image-based or font-based icons are not available, you can leverage the admonition caption to
display an emoji (or any symbol from Unicode) in the place of the admonition label, thus giving you
an alternative way to make admonition icons.

If the icons attribute is not set on the document, the admonition label is shown as text (e.g., CAU­
TION). The text for this label comes from an AsciiDoc attribute. The name of the attribute is <type>-
caption, where <type> is the admonition type in lowercase. For example, the attribute for a tip
admonition is tip-caption.

Instead of a word, you can assign a Unicode glyph to this attribute:

:tip-caption: Ὂ�

[TIP]
It's possible to use Unicode glyphs as admonition icons.

Here’s the result you get in the HTML:

<td class="icon">
<div class="title">Ὂ�</div>
</td>

Instead of entering the glyph directly, you can enter a character reference instead. However, since
you’re defining the character reference in an attribute entry, you (currently) have to disable substi­
tutions on the value.

238 | Enable admonition icons

:tip-caption: pass:[💡]

[TIP]
It's possible to use Unicode glyphs as admonition icons.

On GitHub, the HTML output from the AsciiDoc processor is run through a postprocessing filter that
substitutes emoji shortcodes with emoji symbols. That means you can use these shortcodes instead
in the value of the attribute:

ifdef::env-github[]
:tip-caption: :bulb:
endif::[]

[TIP]
It's possible to use emojis as admonition icons on GitHub.

When the document is processed through the GitHub interface, the shortcodes get replaced with
real emojis. This is the only known way to get admonition icons to work on GitHub.

Using emoji for admonition icons | 239

Sidebars
On this page, you’ll learn:

☑ How to mark up a sidebar with AsciiDoc.

A sidebar can contain any type of content, such as quotes, equations, and images. Normal substitu­
tions are applied to sidebar content.

Sidebar style syntax
If the sidebar content is contiguous, the block style sidebar can be placed directly on top of the text
in an attribute list ([]).

Example 180. Assign sidebar block style to paragraph

[sidebar]
Sidebars are used to visually separate auxiliary bits of content
that supplement the main text.

The result of Example 180 is displayed below.

Sidebars are used to visually separate auxiliary bits of content that supplement the main text.

Delimited sidebar syntax
A delimited sidebar block is delimited by a pair of four consecutive asterisks (****). You don’t need
to set the style name when you use the sidebar’s delimiters.

Example 181. Sidebar block delimiter syntax

.Optional Title

Sidebars are used to visually separate auxiliary bits of content
that supplement the main text.

TIP: They can contain any type of content.

.Source code block in a sidebar
[source,js]

const { expect, expectCalledWith, heredoc } = require('../test/test-utils')

The result of Example 181 is displayed below.

240 | Sidebar style syntax

Optional Title

Sidebars are used to visually separate auxiliary bits of content that supplement the main text.

 They can contain any type of content.

Example 182. Source code block in a sidebar

const { expect, expectCalledWith, heredoc } = require('../test/test-utils')

Delimited sidebar syntax | 241

Example Blocks
On this page, you’ll learn:

☑ How to mark up an example block with AsciiDoc.

An example block is useful for visually delineating content that illustrates a concept or showing the
result of an operation.

An example can contain any type of content and AsciiDoc syntax. Normal substitutions are applied
to example content.

Example style syntax
If the example content is contiguous, i.e., not interrupted by empty lines, the block style name exam­
ple can be placed directly on top of the text in an attribute list ([]).

Example 183. Assign example block style to paragraph

.Optional title
[example]
This is an example of an example block.

The result of Example 183 is displayed below.

Optional title

This is an example of an example block.

Delimited example syntax
If the example content includes multiple blocks or content separated by empty lines, place the con­
tent between delimiter lines consisting of four equals signs (====).

You don’t need to set the block style name when you use the example delimiters.

Example 184. Example block delimiter syntax

.Onomatopoeia
====
The book hit the floor with a *thud*.

He could hear doves *cooing* in the pine trees`' branches.
====

The result of Example 184 is displayed below.

242 | Example style syntax

Onomatopoeia

The book hit the floor with a thud.

He could hear doves cooing in the pine trees’ branches.

 Complex admonitions use the delimited example syntax.

Delimited example syntax | 243

Blockquotes
Prose excerpts, quotes and verses share the same syntax structure, including:

• block name, either quote or verse

• name of who the content is attributed to

• bibliographical information of the book, speech, play, poem, etc., where the content was drawn
from

• excerpt text

Basic quote syntax
For content that doesn’t require the preservation of line breaks, set the quote attribute in the first
position of the attribute list. Next, set the attribution and relevant citation information. These posi­
tional attributes are all optional.

Example 185. Anatomy of a basic quote

[quote,attribution,citation title and information]
Quote or excerpt text

You can include an optional space after the comma that separates each positional attribute. If an
attribute value includes a comma, enclose the value in double or single quotes.

If the quote is a single line or paragraph (i.e., a styled paragraph), you can place the attribute list
directly on top of the text.

Example 186. Quote paragraph syntax

.After landing the cloaked Klingon bird of prey in Golden Gate park: ①
[quote,Captain James T. Kirk,Star Trek IV: The Voyage Home] ② ③ ④
Everybody remember where we parked. ⑤

① Mark lead-in text explaining the context or setting of the quote using a period (.). (optional)

② For content that doesn’t require the preservation of line breaks, set quote in the first position of
the attribute list.

③ The second position contains who the excerpt is attributed to. (optional)

④ Enter additional citation information in the third position. (optional)

⑤ Enter the excerpt or quote text on the line immediately following the attribute list.

The result of Example 186 is displayed below.

After landing the cloaked Klingon bird of prey in Golden Gate park:

Everybody remember where we parked.

244 | Basic quote syntax

— Captain James T. Kirk, Star Trek IV: The Voyage Home

Quoted block
If the quote or excerpt is more than one paragraph, place the text between delimiter lines consist­
ing of four underscores (____).

Example 187. Quote block syntax

[quote,Monty Python and the Holy Grail]

Dennis: Come and see the violence inherent in the system. Help! Help! I'm being
repressed!

King Arthur: Bloody peasant!

Dennis: Oh, what a giveaway! Did you hear that? Did you hear that, eh? That's what I'm
on about! Did you see him repressing me? You saw him, Didn't you?

The result of Example 187 is displayed below.

Dennis: Come and see the violence inherent in the system. Help! Help! I’m
being repressed!

King Arthur: Bloody peasant!

Dennis: Oh, what a giveaway! Did you hear that? Did you hear that, eh?
That’s what I’m on about! Did you see him repressing me? You saw him,
Didn’t you?

— Monty Python and the Holy Grail

Quoted paragraph
You can turn a single paragraph into a blockquote by:

1. surrounding it with double quotes

2. adding an optional attribution (prefixed with two dashes) below the quoted text

Example 188. Quoted paragraph syntax

"I hold it that a little rebellion now and then is a good thing,
and as necessary in the political world as storms in the physical."
-- Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

The result of Example 188 is displayed below.

Quoted block | 245

I hold it that a little rebellion now and then is a good thing, and as necessary
in the political world as storms in the physical.

— Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

Excerpt
The quote block can be designated as an excerpt by adding the excerpt role. The exceptation is that
this role makes the quote block appear with the quote decoration.

[.excerpt]

This text is an excerpt from the referenced literature.

The impact of this role is strictly a presentation concern and is thus handled by the styling system,
such as the stylesheet for HTML.

Markdown-style blockquotes
Asciidoctor supports Markdown-style blockquotes. This syntax was adopted both to ease the transi­
tion from Markdown and because it’s the most common method of quoting in email messages.

Example 189. Markdown-style blockquote syntax

> I hold it that a little rebellion now and then is a good thing,
> and as necessary in the political world as storms in the physical.
> -- Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

The result of Example 189 is displayed below.

I hold it that a little rebellion now and then is a good thing, and as necessary
in the political world as storms in the physical.

— Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

Like Markdown, Asciidoctor supports some block content inside the blockquote, including para­
graphs, lists, and nested blockquotes.

Example 190. Markdown-style blockquote containing block content

> > What's new?
>
> I've got Markdown in my AsciiDoc!
>
> > Like what?
>

246 | Excerpt

> * Blockquotes
> * Headings
> * Fenced code blocks
>
> > Is there more?
>
> Yep. AsciiDoc and Markdown share a lot of common syntax already.

Here’s how the conversation from Example 190 is rendered.

What’s new?

I’ve got Markdown in my AsciiDoc!

Like what?

• Blockquotes

• Headings

• Fenced code blocks

Is there more?

Yep. AsciiDoc and Markdown share a lot of common syntax already.

Be aware that not all AsciiDoc block elements are supported inside a Markdown-style blockquote.
In particular, a description list is not permitted. The parser looks for the Markdown-style block­
quote only after looking for a description list, meaning the description list takes precedence. Since
the quote marker is a valid prefix for a description list term, the Markdown-style blockquote is not
recognized in this case. If you need to put a description list inside a blockquote, you should use the
AsciiDoc syntax for a blockquote instead.

The Markdown-style blockquote should only be used in simple cases and when migrating from
Markdown. The AsciiDoc syntax should always be preferred, if possible.

Markdown-style blockquotes | 247

Verses
When you need to preserve indents and line breaks, use a verse block. Verses are defined by setting
verse on a paragraph or an excerpt block delimited by four underscores (____).

verse style syntax
When verse content doesn’t contain any empty lines, you can assign the verse style using the first
position in an attribute list.

Example 191. Verse style syntax

[verse,Carl Sandburg, two lines from the poem Fog]
The fog comes
on little cat feet.

The result of Example 191 is displayed below.

The fog comes
on little cat feet.

— Carl Sandburg, two lines from the poem Fog

Delimited verse block syntax
When the verse content includes empty lines, enclose it in a delimited excerpt block.

Example 192. Verse delimited block syntax

[verse,Carl Sandburg,Fog]

The fog comes
on little cat feet.

It sits looking
over harbor and city
on silent haunches
and then moves on.

The delimited verse block from Example 192 is rendered below.

The fog comes
on little cat feet.

It sits looking

248 | verse style syntax

over harbor and city
on silent haunches
and then moves on.

— Carl Sandburg, Fog

Delimited verse block syntax | 249

Verbatim and Source Blocks

Source Code Blocks
A source block is a specialization of a listing block. Developers are accustomed to seeing source
code colorized to emphasize the code’s structure (i.e., keywords, types, delimiters, etc.). This tech­
nique is known as syntax highlighting. Since this technique is so prevalent, AsciiDoc processors
will integrate at least one library to syntax highlight the source code blocks in your document. For
example, Asciidoctor provides integration with Rouge, CodeRay, Pygments, and highlight.js, as well
as an adapter API to add support for additional libraries.

Example 193 shows a listing block with the source style and language ruby applied to its content,
hence a source block.

Example 193. Source block syntax

[source,ruby]

require 'sinatra'

get '/hi' do
 "Hello World!"
end

The result of Example 193 is rendered below.

require 'sinatra'

get '/hi' do
 "Hello World!"
end

Since a source block is most often used to designate a block with source code of a particular lan­
guage, the source style itself is optional. The mere presence of the language on a listing block auto­
matically promotes it to a source block.

Example 194 shows a listing block implied to be a source block because a language is specified.

Example 194. Implied source block

[,ruby]

require 'sinatra'

get '/hi' do
 "Hello World!"
end

250 | Source Code Blocks

This shorthand also works if the source-language attribute is set on the document, which serves as
the default language for source blocks. If the source-language attribute is set on the document and
you want to make a regular listing block, add the listing style to the block.

Using include directives in source blocks

You can use an include directive to insert source code into an AsciiDoc document directly from a
file.

Example 195. Code inserted from another file

[,ruby]

include::app.rb[]



If you specify custom substitutions on the source block using the subs attribute,
make sure to include the specialcharacters substitution if you want to preserve
syntax highlighting. However, if you do plan to modify the substitutions, we rec­
ommend using incremental substitutions instead.

Source Highlighting

Source highlighting is applied to text that’s assigned the source block style (either explicitly or
implicitly) and a source language. The source language is defined either on the block or inherited
from the source-language document attribute.

source-highlighter attribute

Source highlighting isn’t enabled by default. To enable source highlighting, you must set the source-
highlighter attribute in the document header using an attribute entry.

= Document Title
:source-highlighter: <value>

For example, here’s how to enable syntax highlighting using Rouge:

= Document Title
:source-highlighter: rouge

You can also declare this attribute using the CLI or API.

Source Code Blocks | 251

Available source highlighters

Table 1 lists the recognized values for the source-highlighter attribute and the toolchains that sup­
port the usage of the syntax highlighting libraries.

Table 1. Built-in source-highlighter values and the supporting toolchains

Library Value Toolchain

CodeRay coderay Asciidoctor, AsciidoctorJ, Asciidoctor PDF

highlight.js highlight.js Asciidoctor, AsciidoctorJ, Asciidoctor.js

Pygments pygments Asciidoctor, Asciidoctor PDF

Rouge rouge Asciidoctor, AsciidoctorJ, Asciidoctor PDF

To use Rouge, CodeRay, or Pygments, you must have the appropriate library installed on your sys­
tem. See Rouge, CodeRay, or Pygments for installation instructions.

If you’re using the client-side library Highlight.js, there’s no need to install additional libraries. The
generated HTML will load the required source files from a CDN, custom URL, or file path.

Source Highlighter vs. Syntax Highlighter

You might notice that the source-highlighter attribute uses the term “source highlighter”,
whereas the library that performs the highlighting is referred to as a “syntax highlighter”.
What’s the difference?

• The generally accepted term for a syntax (aka code) highlighter is “syntax highlighter”.

• The syntax highlighter is applied to source blocks in AsciiDoc, hence why we say “source
highlighter”.

In other words, the source-highlighter attribute means “use this syntax highlighter to col­
orize source blocks”.

Apply source highlighting

To apply highlighting to a block of source code, you must specify a source language. If the block is a
literal block or paragraph, you must also specify the source style.

The AsciiDoc language does not specify the list of valid source language values. Instead, the avail­
able source language values are defined by the syntax highlighter library.



You can find the list of available languages supported by Rouge in the Rouge docu­
mentation. You can print a list of available languages supported by Pygments by
running pygmentize -L formatters. The available languages supported by high­
light.js depends on which bundle of highlight.js you are using.

Typically, the source language value is the proper name of the language in lowercase (e.g., ruby,
java). Most syntax highlighters also accept using the source file extension (e.g., js, rb), though it’s

252 | Source Code Blocks

https://docs.asciidoctor.org/asciidoctor/latest/syntax-highlighting/rouge/
https://docs.asciidoctor.org/asciidoctor/latest/syntax-highlighting/coderay/
https://docs.asciidoctor.org/asciidoctor/latest/syntax-highlighting/pygments/
https://docs.asciidoctor.org/asciidoctor/latest/syntax-highlighting/highlightjs/
https://github.com/rouge-ruby/rouge/blob/master/docs/Languages.md
https://github.com/rouge-ruby/rouge/blob/master/docs/Languages.md

important to be consistent. If the syntax highlighter doesn’t recognize or support the source lan­
guage, the block will not be highlighted.

Example 196. Source block with ID and source highlighting

[#hello,ruby] ① ② ③
--④
require 'sinatra'

get '/hi' do
 "Hello World!"
end

① The block style source is implied since a source language is specified.

② An optional ID can be added to the block by appending it to style using the shorthand syntax (#)
for id.

③ Assign a source language to the second position.

④ An implicit source block uses the listing structural container.

The result of Example 196 is displayed below.

require 'sinatra'

get '/hi' do
 "Hello World!"
end

Example 197. Source paragraph

[source,xml] ①
<meta name="viewport"
 content="width=device-width, initial-scale=1.0">
②
This is normal content.

① Place the attribute list directly above the paragraph. In this case, the source style is always
required.

② Once an empty line is encountered the source block ends.

The result of Example 197 is displayed below.

<meta name="viewport"
 content="width=device-width, initial-scale=1.0">

This is normal content.

Source Code Blocks | 253

shell vs console

The source language for shell and console are often mixed up. The language shell is intended for
the contents of a shell script, often indicated by a shebang for the generic shell. If the shell script is
written for a particular shell, you might use that language instead (e.g., bash or zsh). The language
console is intended to represent text that’s typed into a console (i.e., a terminal application).

Here’s an example of when you would use shell:

[,shell]

#!/bin/sh

fail () {
 echo
 echo "$*"
 echo
 exit 1
} >&2

JAVACMD=java
which java >/dev/null 2>&1 || fail "ERROR: no 'java' command could be found in your
PATH.

exec "$JAVACMD" "$@"

Here’s an example of when you would use console:

[source,console]
$ asciidoctor -v

Typically, the syntax highlighter will parse the prompt (e.g., $) at the start of each line, then handle
the remaining text using the shell language.

Often times, a basic console command is represented using a literal paragraph since there isn’t
much to be gained from syntax highlighting in this case.

Enable line numbering

Provided the feature is supported by the source highlighter, you can enable line numbering on a
source block by setting the linenums option on the block.



Line numbering is added by the syntax highlighter, not the AsciiDoc converter.
Therefore, to get line numbering on a source block, you must have the source-
highlighter attribute set and the library to which it refers must support line num­
bering. When using Asciidoctor, the only syntax highlighter that does not support
line numbering is highlight.js.

254 | Source Code Blocks

The linenums option can either be specified as a normal block option named linenums, or as the third
positional attribute on the block. The value of the positional attribute doesn’t matter, though it’s
customary to use linenums.

Example 198. Enable line numbering using the linenums option

[%linenums,ruby]

puts 1
puts 2
puts 3

Example 199. Enable line numbering using the third positional attribute

[,ruby,linenums]

puts 1
puts 2
puts 3

Disable source highlighting

To disable source highlighting for a given source block, specify the language as text or remove the
source style.

source-language attribute

If the majority of your source blocks use the same source language, you can set the source-language
attribute in the document header and assign a language to it. Setting the source-language document
attribute implicitly promotes listing blocks to source blocks.

Example 200. Set source-language attribute

= Document Title
:source-highlighter: pygments
:source-language: java

public void setAttributes(Attributes attributes) {
 this.options.put(ATTRIBUTES, attributes.map());
}

Notice that it’s not necessary to specify the source style or source language on the block. To make a
listing block in this situation, you must set the listing style on the block.

You can override the global source language on an individual block by specifying a source language

Source Code Blocks | 255

directly on the block.

Example 201. Override source-language attribute

= Document Title
:source-highlighter: pygments
:source-language: java

[,ruby]
require 'sinatra'

Highlight Select Lines

Not to be confused with source highlighting, you can highlight (i.e., emphasize) specific lines in a
source block in order to call attention to them.

Usage criteria

Line highlighting can be applied to a source block if certain criteria are met.

source-high­
lighter

Criteria to use the highlight attribute on a source block

coderay • The linenums option is enabled on the block.

• The highlight attribute is defined on the block.

Line highlighting will only emphasize the line number itself.

rouge • The highlight attribute is defined on the block.

• The CSS to support line highlighting is supplied by docinfo. (Needed even if
rouge-css=style).

pygments • The highlight attribute is defined on the block.

highlight.js Not applicable.

Line highlighting isn’t available when using highlight.js.

highlight attribute

Line highlighting is activated on a source block if the highlight attribute is defined and at least one
of the line numbers falls in this range.


Keep in mind that some syntax highlighter libraries require additional options
(e.g., CodeRay and Rouge), and some don’t support line highlighting at all (e.g.,
highlight.js).

The highlight attribute accepts a comma or semicolon delimited list of line ranges. The numbers
correspond to the line numbers of the source block. If the start attribute is not specified, line num­
bers of the source block start at 1.

256 | Source Code Blocks

Here are some examples:

• 1

• 2,4,6

• 3..5

• 2,7..9

A line range is represented by two numbers separated by a double period (e.g., 2..5). The range is
inclusive.

CodeRay

Example 202. Highlight select lines when source-highlighter=coderay

= Document Title
:source-highlighter: coderay

[%linenums,ruby,highlight=2..5]

ORDERED_LIST_KEYWORDS = {
 'loweralpha' => 'a',
 'lowerroman' => 'i',
 'upperalpha' => 'A',
 'upperroman' => 'I',
}

When using CodeRay as the source highlighter, the linenums option is required to use line highlight­
ing. That’s because line highlighting is only applied to the line number, which is emphasized using
bold text. CodeRay does not shade the line of code itself.

Rouge

Example 203. Highlight select lines when source-highlighter=rouge

= Document Title
:source-highlighter: rouge
:docinfo: shared

[,ruby,highlight=2..5]

ORDERED_LIST_KEYWORDS = {
 'loweralpha' => 'a',
 'lowerroman' => 'i',
 'upperalpha' => 'A',
 'upperroman' => 'I',
}

Source Code Blocks | 257

When using Rouge as the source highlighter, you must supply CSS to support line highlighting. You
can do so by storing the required line highlighting CSS in a docinfo file, then including it in the out­
put document by setting the docinfo document attribute.

Example 204. Docinfo file (docinfo.html) to support line highlighting with Rouge

<style>
pre.rouge .hll {
 background-color: #ffc;
 display: block;
}
pre.rouge .hll * {
 background-color: initial;
}
</style>

Note that this supplemental CSS is needed even when rouge-css=style. The Rouge integration does
not embed the CSS for highlighting lines into the style attribute of the tag for each line. Instead, it
sets the hll class on the tag (e.g.,).

Pygments

Example 205. Highlight select lines when source-highlighter=pygments

= Document Title
:source-highlighter: pygments

[,ruby,highlight=2..5]

ORDERED_LIST_KEYWORDS = {
 'loweralpha' => 'a',
 'lowerroman' => 'i',
 'upperalpha' => 'A',
 'upperroman' => 'I',
}

Highlight PHP Source Code

The PHP language has two modes. It can either be used as a standalone language (pure mode) or it
can be mixed with HTML (mixed mode) by putting it inside PHP tags (a form that resembles an XML
processing instruction). This presents some challenges for the syntax highlighter.

If the code in the source block is pure PHP, you should use the language tag php. For example:

[source,php]

echo "Hello, World!";

258 | Source Code Blocks

If the PHP source is mixed with HTML, you should either use the language tag html+php, as shown
here:

[source,html+php]

<p>
<?php echo "Hello, World!"; ?>
</p>

Or you should use the language tag php and set the mixed option on the source block, as shown here:

[source%mixed,php]

<p>
<?php echo "Hello, World!"; ?>
</p>

Under the covers, the syntax highlighter is configured to assume an implicit start PHP tag is present
when the language tag is php. Both the mixed option and the language tag html+php disable this set­
ting.

Listing Blocks
Blocks and paragraphs assigned the listing style display their rendered content exactly as you see
it in the source. Listing content is converted to preformatted text (i.e., <pre>). The content is pre­
sented in a fixed-width font and endlines are preserved. Only special characters and callouts are
replaced when the document is converted.

The listing style can be applied to content using one of the following methods:

• setting the listing style on a block or paragraph using an attribute list, or

• enclosing the content within a pair of listing block delimiters (----).

Listing style syntax

The block style listing can be applied to a block or paragraph, by setting the attribute listing using
an attribute list.

Example 206. Listing style syntax

[listing]
This is an example of a paragraph assigned
the `listing` style in an attribute list.

Listing Blocks | 259

Notice that the monospace marks are
preserved in the output.

The result of Example 206 is rendered below.

This is an example of a paragraph assigned
the `listing` style in an attribute list.
Notice that the monospace marks are
preserved in the output.

Delimited listing block

A delimited listing block is surrounded by lines composed of four hyphens (----). This method is
useful when the content contains empty lines.

Example 207. Delimited listing block syntax

This is a _delimited listing block_.

The content inside is displayed as <pre> text.

Here’s how the block in Example 207 appears when rendered.

This is a _delimited listing block_.

The content inside is displayed as <pre> text.

You should notice a few things about how the content is processed.

• The HTML element <pre> is escaped, that is, it’s displayed verbatim, not interpreted.

• The endlines are preserved.

• The phrase delimited listing block isn’t italicized, despite having the underscore formatting
marks around it.

Listing blocks are good for displaying snippets of raw source code, especially when used in tandem
with the source style and source-highlighter attribute. See Source Code Blocks to learn more about
source and source-highlighter.

Listing substitutions

Content that is assigned the listing style, either via the explicit block style or the listing delimiters
is subject to the verbatim substitution group. Only special characters and callouts are replaced
automatically in listing content.

260 | Listing Blocks

You can control the substitutions applied to a listing block using the subs attribute.

Example 208. Delimited listing block with custom substitutions syntax

[subs="+attributes"]

This is a _delimited listing block_
with the `subs` attribute assigned
the incremental value `+attributes`.
This attribute reference:

{replace-me}

will be replaced with the attribute's
value when rendered.

The result of Example 208 is rendered below.

This is a _delimited listing block_
with the `subs` attribute assigned
the incremental value `+attributes`.
This attribute reference:

I've been replaced!

will be replaced with the attribute's
value when rendered.

See Customize the Substitutions Applied to Blocks to learn more about the subs attribute and how to
apply incremental substitutions to listing content.

Literal Blocks
Literal blocks display the text you write exactly as you see it in the source. Literal text is treated as
preformatted text. The text is presented in a fixed-width font and endlines are preserved. Only spe­
cial characters and callouts are replaced when the document is converted.

The literal style can be applied to content using any of the following methods:

• indenting the first line of a paragraph by one or more spaces,

• setting the literal style on a block using an attribute list, or

• enclosing the content within a pair of literal block delimiters (....).

Indent method

When a line begins with one or more spaces it is displayed as a literal block. This method is an easy

Literal Blocks | 261

way to insert simple code snippets.

Example 209. Indicate literal text using an indent

 ~/secure/vault/defops

The result of Example 209 is rendered below.

~/secure/vault/defops

literal style syntax

The literal style can be applied to a block, such as a paragraph, by setting the style attribute literal
on the block using an attribute list.

Example 210. Literal style syntax

[literal]
error: 1954 Forbidden search
absolutely fatal: operation lost in the dodecahedron of doom
Would you like to try again? y/n

The result of Example 210 is rendered below.

error: 1954 Forbidden search
absolutely fatal: operation lost in the dodecahedron of doom
Would you like to try again? y/n

Delimited literal block

Finally, you can surround the content you want rendered as literal by enclosing it in a pair of literal
block delimiters (....). This method is useful when the content contains empty lines.

Example 211. Delimited literal block syntax

....
Kismet: Where is the *defensive operations manual*?

Computer: Calculating ...
Can not locate object.
You are not authorized to know it exists.

Kismet: Did the werewolves tell you to say that?

Computer: Calculating ...
....

262 | Literal Blocks

The result of Example 211 is rendered below.

Kismet: Where is the *defensive operations manual*?

Computer: Calculating ...
Can not locate object.
You are not authorized to know it exists.

Kismet: Did the werewolves tell you to say that?

Computer: Calculating ...

Notice in the output that the bold text formatting is not applied to the text nor are the three consec­
utive periods replaced by the ellipsis Unicode character.

Callouts
Callout numbers (aka callouts) provide a means to add annotations to lines in a verbatim block.

Callout syntax

Each callout number used in a verbatim block must appear twice. The first use, which goes within
the verbatim block, marks the line being annotated (i.e., the target). The second use, which goes
below the verbatim block, defines the annotation text. Multiple callout numbers may be used on a
single line.

 The callout number (at the target) must be placed at the end of the line.

Here’s a basic example of a verbatim block that uses callouts:

Example 212. Callout syntax

[source,ruby]

require 'sinatra' <1>

get '/hi' do <2> <3>
 "Hello World!"
end

<1> Library import
<2> URL mapping
<3> Response block

The result of Example 212 is rendered below.

require 'sinatra' ①

Callouts | 263

get '/hi' do ② ③
 "Hello World!"
end

① Library import

② URL mapping

③ Response block

Since callout numbers can interfere with the syntax of the code they are annotating, an AsciiDoc
processor provides several features to hide the callout numbers from both the source and the con­
verted document. The sections that follow detail these features.

Automatic numbering

Just like ordered lists, it’s possible to allow the processor to automatically number the callouts. To
leverage this capability, you replace the numbers in each callout with a dot (e.g., <.>). Each time the
processor comes across a callout in either the verbatim block or the callout list, it selects the next
number in the sequence (scoped to that block), starting from 1.

Let’s return to the previous example to see how it looks if we use automatic numbering.

Example 213. Callout syntax with automatic numbering

[,ruby]

require 'sinatra' <.>

get '/hi' do <.> <.>
 "Hello World!"
end

<.> Library import
<.> URL mapping
<.> Response block

The result is exactly the same as before.

Mixed numbering

The <.> callouts are automatically numbered based on their sequence among other <.>, not any
callouts that have an explicit number. In other words, the automatic numbering is not aware of any
explicit numbering. Therefore, you should generally avoid mixing them.

However, if you want to repeat a number in the verbatim block, then you can use an explicit num­
ber to create additional occurrences of that callout number.

Let’s consider an example:

264 | Callouts

Example 214. Callout syntax with mixed numbering

[,ruby]

require 'asciidoctor' <.>

puts Asciidoctor::VERSION <1>

Asciidoctor.convert_file 'README.adoc' <.>

<.> The require statement exports the class from the gem to the global scope.
<.> We can then call methods provided by that class.

The result of Example 214 is rendered below.

require 'asciidoctor' ①

puts Asciidoctor::VERSION ①

Asciidoctor.convert_file 'README.adoc' ②

① The require statement exports the class from the gem to the global scope.

② We can then call methods provided by that class.

The risk of this approach is that you have to keep track of which numbers are being assigned auto­
matically.

Copy and paste friendly callouts

If you add callout numbers to example code in a verbatim (e.g., source) block, and a reader selects
that source code in the generated HTML, we don’t want the callout numbers to get caught up in the
copied text. If the reader pastes that example code into a code editor and tries to run it, the extra
characters that define the callout numbers will likely lead to compile or runtime errors. To mitigate
this problem, and AsciiDoc processor uses a CSS rule to prevent the callouts from being selected.
That way, the callout numbers won’t get copied.

On the other side of the coin, you don’t want the callout annotations or CSS messing up your raw
source code either. You can tuck your callouts neatly behind line comments. When font-based icons
are enabled (e.g., icons=font), the AsciiDoc processor will recognize the line comments characters in
front of a callout number—optionally offset by a space—and remove them when converting the
document. When font-based icons aren’t enabled, the line comment characters are not removed so
that the callout numbers remain hidden by the line comment.

Here are the line comments that are supported:

Example 215. Prevent callout copy and paste

line of code // <1>

Callouts | 265

line of code # <2>
line of code ;; <3>
line of code <!--4-->

<1> A callout behind a line comment for C-style languages.
<2> A callout behind a line comment for Ruby, Python, Perl, etc.
<3> A callout behind a line comment for Clojure.
<4> A callout behind a line comment for XML or SGML languages like HTML.

The result of Example 215 is rendered below.

line of code ①
line of code ②
line of code ③
line of code ④

① A callout behind a line comment for C-style languages.

② A callout behind a line comment for Ruby, Python, Perl, etc.

③ A callout behind a line comment for Clojure.

④ A callout behind a line comment for XML or SGML languages like HTML.

Custom line comment prefix

An AsciiDoc processor recognizes the most ubiquitous line comment prefixes as a convenience. If
the source language you’re embedding does not support one of these line comment prefixes, you
can customize the prefix using the line-comment attribute on the block.

Let’s say we want to tuck a callout behind a line comment in Erlang code. In this case, we would set
the line-comment character to %, as shown in this example:

Example 216. Custom line comment prefix

[source,erlang,line-comment=%]

-module(hello_world).
-compile(export_all).

hello() ->
 io:format("hello world~n"). % <1>

<1> A callout behind a custom line comment prefix.

The result of Example 216 is rendered below.

-module(hello_world).
-compile(export_all).

266 | Callouts

hello() ->
 io:format("hello world~n"). % ①

① A callout behind a custom line comment prefix.

Even though it’s not specified in the attribute, one space is still permitted immediately following the
line comment prefix.

Disable line comment processing

If the source language you’re embedding does not support trailing line comments, or the line com­
ment prefix is being misinterpreted, you can disable this feature using the line-comment attribute.

Let’s say we want to put a callout at the end of a block delimiter for an open block in AsciiDoc. In
this case, the processor will think the double hyphen is a line comment, when in fact it’s the block
delimiter. We can disable line comment processing by setting the line-comment character to an
empty value, as shown in this example:

Example 217. No line comment prefix

[source,asciidoc,line-comment=]

-- <1>
A paragraph in an open block.
--

<1> An open block delimiter.

The result of Example 217 is rendered below.

①
A paragraph in an open block.
--

① An open block delimiter.

Since the language doesn’t support trailing line comments, there’s no way to hide the callout num­
ber in the raw source.

XML callouts

XML doesn’t have line comments, so our “tuck the callout behind a line comment” trick doesn’t
work here. To use callouts in XML, you must place the callout’s angled brackets around the XML
comment and callout number.

Here’s how it appears in a listing:

Example 218. XML callout syntax

[source,xml]

Callouts | 267

<section>
 <title>Section Title</title> <!--1-->
</section>

<1> The section title is required.

The result of Example 218 is rendered below.

<section>
 <title>Section Title</title> ①
</section>

① The section title is required.

Notice the comment has been replaced with a circled number that cannot be selected (if not using
font icons it will be rendered differently and selectable). Now both you and the reader can copy and
paste XML source code containing callouts without worrying about errors.

Callout icons

The font icons setting also enables callout icons drawn using CSS.

= Document Title
:icons: font ①

NOTE: Asciidoctor supports font-based admonition
icons, powered by Font Awesome! ②

① Activates the font-based icons in the HTML5 backend.

② Admonition block that uses a font-based icon.

268 | Callouts

Tables

Build a Basic Table
A table is a delimited block that can have optional customizations, such as an ID and a title, as well
as table-specific attributes, options, and roles. However, at its most basic, a table only needs
columns and rows.

On this page, you’ll learn:

☑ How to set up an AsciiDoc table block and its attribute list.

☑ How to add columns to a table using the cols attribute.

☑ How to add cells to a table and arrange them into rows.

☑ How to designate a row as the table’s header row.

Create a table with two columns and three rows

In Example 219, we’ll assign the cols attribute a list of column specifiers. A column specifier repre­
sents a column.

Example 219. Set up a table with two columns

[cols="1,1"] ① ②
|=== ③

① On a new line, create an attribute list. Set the cols attribute, followed by an equals sign (=).

② Assign a list of comma-separated column specifiers enclosed in double quotation marks (") to
cols. Each column specifier represents a column.

③ On the line directly after the attribute list, enter the opening table delimiter. A table delimiter is
one vertical bar followed by three equals signs (|===). This delimiter starts the table block.

The table in Example 219 will contain two columns because there are two comma-separated entries
in the list assigned to cols. Each entry in the list is called a column specifier. A column specifier
represents a column and the width, alignment, and style properties assigned to that column. When
each column specifier is the same number, in this case the integer 1, all of the columns’ widths will
be identical. Each column in Example 219 will be the same width regardless of how much content
they contain.

Next, let’s add three rows to the table. Each row has the same number of cells. Since the table in
Example 220 has two columns, each row will contain two cells. A cell starts with a vertical bar (|).

Example 220. Add three rows to the table

[cols="1,1"]
|===
|Cell in column 1, row 1 ①
|Cell in column 2, row 1 ②

Build a Basic Table | 269

③
|Cell in column 1, row 2
|Cell in column 2, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3 ④
|=== ⑤

① To create a new cell, press Shift  +  | . After the vertical bar (|), enter the content you want dis­
played in that cell.

② On a new line, start another cell with a |. Each consecutive cell is placed in a separate, consecu­
tive column in a row.

③ Rows are separated by one or more empty lines.

④ When you finish adding cells to your table, press Enter to go to a new line.

⑤ Enter the closing delimiter (|===) to end the table block.



The suggestion to start each cell on its own line and to separate rows by empty
lines is merely a stylistic choice. You can enter more than one cell or all of the cells
in a row on the same line since the processor creates a new cell each time it
encounters a vertical bar (|).

The table from Example 220 is displayed below. It contains two columns and three rows of text
positioned and styled using the default alignment, style, border, and width attribute values.

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Cell in column 1, row 3 Cell in column 2, row 3

In addition to the cols attribute, you can identify the number of columns using a column multiplier
or the table’s first row. However, the cols attribute is required to customize the width, alignment,
or style of a column.

Add a header row to the table

Let’s add a header row to the table in Example 221. You can implicitly identify the first row of a ta­
ble as a header row by entering all of the first row’s cells on the line directly after the opening table
delimiter.

Example 221. Add a header row to the table

[cols="1,1"]
|===
|Cell in column 1, header row |Cell in column 2, header row ①
②
|Cell in column 1, row 2
|Cell in column 2, row 2

270 | Build a Basic Table

|Cell in column 1, row 3
|Cell in column 2, row 3

|Cell in column 1, row 4
|Cell in column 2, row 4
|===

① On the line directly after the opening delimiter (|===), enter all of the first row’s cells on a single
line.

② Leave the line directly after the header row empty.

The table from Example 221 is displayed below.

Cell in column 1, header row Cell in column 2, header row

Cell in column 1, row 2 Cell in column 2, row 2

Cell in column 1, row 3 Cell in column 2, row 3

Cell in column 1, row 4 Cell in column 2, row 4

A header row can also be identified by assigning header to the options attribute.

Add a Title
A table can have an optional title (i.e., table caption). To add a title to a table, use the block title syn­
tax.

Example 222. Add an optional title to a table

.A table with a title ①
[%autowidth]
|===
|Column 1, header row |Column 2, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

① On the line directly above the table’s opening delimiter (or above its optional attribute line, as
shown here), enter a dot (.) directly followed by the text of the title.

The table from Example 222 is displayed below.

Table 2. A table with a title

Column 1, header row Column 2, header row

Cell in column 1, row 2 Cell in column 2, row 2

You’ll notice in the above result, that the processor automatically added Table 1. in front of the ta­
ble’s title. This title label can be customized or deactivated.

Add a Title | 271

Customize the Title Label

When you add a title to a table, the processor automatically prefixes it with the label Table <n>.,
where <n> is the 1-based index of all of the titled tables in the document. This label can be modified
at the document level or per table. It can also be deactivated.

Modify the label using table-caption

You can change the label for all titled tables using the document attribute table-caption. (Don’t let
the attribute’s name mislead you. It’s the attribute that controls the table title labels at the docu­
ment level.)

In the document header, set the table-caption attribute and assign it your custom label text.

= Document Title
:table-caption: Data Set ① ②

① Set the document attribute table-caption and assign it the text you want to precede each table
title.

② Don’t enter a number after the label text. The processor will automatically insert and increment
the number.

In Example 223, the first and third tables have a title, but the second table doesn’t have a title.

Example 223. Add two titled tables and one untitled table to a document

= Document Title
:table-caption: Data Set

.A table with a title
[cols="2,1"]
|===
|Lots and lots of data |A little data

|834,734 |3
|3,999,271.5601 |5
|===

|===
|Group |Climate |Example

|A
|Tropical
|Suva, Fiji

|B
|Arid
|Lima, Peru
|===

272 | Add a Title

.Another table with a title
|===
|Value |Result |Notes

|Null |A mystery |See Appendix R
|===

Since table-caption is assigned the value Data Set, any table title should be preceded with the label
Data Set <n>. The three tables from Example 223 are displayed below.

Data Set 3. A table with a title

Lots and lots of data A little data

834,734 3

3,999,271.5601 5

Group Climate Example

A Tropical Suva, Fiji

B Arid Lima, Peru

Data Set 4. Another table with a title

Value Result Notes

Null A mystery See Appendix R

Notice that the table that doesn’t have a title didn’t get a label nor was it counted when the proces­
sor incremented the label number. Therefore, the third table is assigned the label Data Set 2.

Modify the label of an individual table using caption

You can customize the label on an individual table by setting the caption attribute. (Don’t let the
name of the attribute mislead you. The caption attribute only sets the caption’s label, not the whole
caption line). When using caption, assign it the exact value you want displayed (including trailing
spaces). Labels assigned using caption don’t get an automatically incremented number and only
apply to the table they are set on.


If you want a space between the label and the title, you must add a trailing space
to the value of the caption attribute.

Example 224. Modify the label using caption

[caption="Table A. "] ① ②
.A table with a custom label
[cols="3*"]
|===
|Null
|A mystery
|See Appendix R

Add a Title | 273

|===

① Create an attribute list directly above the table’s title and set the named attribute caption, fol­
lowed by an equals sign (=), and then a value.

② Enclose the value in double quotation marks ("). Otherwise the processor will remove any trail­
ing whitespaces, and the title text will start directly after the last character of the label.

The table from Example 224 is displayed below.

Table A. A table with a custom label

Null A mystery See Appendix R

If you create any subsequent tables in your document and don’t set caption on them, the title labels
will revert to the value assigned to table-caption.

If you want the caption of the table to only consist of the caption label, use the following syntax:

[caption=,title="{table-caption} {counter:table-number}"]
[%header,cols=2*]
|===
|Name of Column 1
|Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Alternately, you can write is as follows:

.{empty}
[caption="{table-caption} {counter:table-number}"]
[%header,cols=2*]
|===
|Name of Column 1
|Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

274 | Add a Title

Turn Off the Title Label

Disable the label using table-caption

You can disable the title label for all of the tables in a document by unsetting the table-caption doc­
ument attribute.

= Title of Document
:table-caption!: ①

.A table with a title but no label
|===
|Value |Result |Notes

|Null |A mystery |See Appendix R
|===

① In an attribute entry, enter the name of the attribute, table-caption, and append a bang (!) to the
end of the name. This unsets the attribute.

When table-caption is unset, table titles aren’t preceded by a label and label number.

A table with a title but no label

Value Result Notes

Null A mystery See Appendix R

Disable the label using caption

To remove the label on an individual table, assign an empty value to the caption attribute.

[caption=] ①
.A table with a title but no label
[cols="2,1"]
|===
|Lots and lots of data |A little data

|834,734 |3
|3,999,271.5601 |5
|===

① Enter the attribute’s name, caption, in an attribute list directly above the table title, followed by
an equals sign (=). Don’t enter a value after the =.

The table from the previous example is displayed below.

A table with a title but no label

Add a Title | 275

Lots and lots of data A little data

834,734 3

3,999,271.5601 5

Add Columns to a Table
The number of columns in a table is specified by the cols attribute or by the number of cells found
in the first non-empty line after the opening table delimiter (|===).

Specify the number of columns with the cols attribute

The cols attribute is set in the attribute list on a table block. It accepts a comma-separated list of col­
umn specifiers. Each column specifier represents a column and the width, alignment, and style
properties assigned to that column. A column specifier is commonly represented by a number, but
in some cases, can be represented by a symbol or letter. In Example 225, cols is assigned a list of
four numeric column specifiers.

Example 225. Assign column specifiers to the cols attribute

[cols="1,1,1,1"]

In Example 225, the value assigned to cols contains four column specifiers. The number of entries
in the value’s list determines the number of columns in the table. That means the table in the above
example will contain four columns. When the specifier is a number, such as 1 or 50, the integer rep­
resents the width of the column in proportion to the other columns in the table. In Example 225,
each column will be the same width because the integer in each specifier is the same. Let’s look at
the column specifiers in Example 226 and compare it to Example 225.

Example 226. Assign column specifiers to the cols attribute

[cols="3,3,3,3"]

Both Example 225 and Example 226 will produce tables with four columns of equal width. Let’s use
the cols value in Example 226 to create a table.

Example 227. Create a table with four columns of equal width

[cols="3,3,3,3"] ①
|=== ②
|Column 1 |Column 2 |Column 3 |Column 4 ③
④
|Cell in column 1 ⑤
|Cell in column 2
|Cell in column 3
|Cell in column 4
|=== ⑥

276 | Add Columns to a Table

① In an attribute list, set the cols attribute, followed by an equals sign (=), and then a list of
comma-separated column specifiers enclosed in double quotation marks (").

② On the line directly after the attribute list, enter the opening table delimiter. A table delimiter is
one vertical bar followed by three equals signs (|===).

③ A table cell is specified by a vertical bar (|). Since four consecutive cells are entered on the first
line directly after the delimiter, this row is implicitly set as the table’s header row.

④ Insert an empty line after the header row.

⑤ The cells for the next row can be entered on a single line or on individual lines.

⑥ On a new line after the last cell of the last row, enter another table delimiter (|===) to close the
table block.

Example 227 creates the table displayed below.

Result of Example 227

Column 1 Column 2 Column 3 Column 4

Cell in column 1 Cell in column 2 Cell in column 3 Cell in column 4

As specified, the table includes four columns of equal width, a header row, and a regular row. Since
all of the columns in Example 227 are assigned the same width via their column specifiers (i.e., 3),
the number of columns could be specified with a column multiplier. Or, you could adjust the width
of an individual column by increasing the numerical value of its specifier.

Using a column multiplier

A column multiplier allows you to apply the same width, horizontal alignment, vertical alignment,
and content style to multiple, consecutive columns in a table. A multiplier consists of an integer (
<n>) and an asterisk (*). The integer represents the number of consecutive columns to be added to
the table. The asterisk (*) is called the multiplier operator and is placed directly after the integer
(<n>*). The operator tells the converter to interpret the integer as part of a column multiplier
instead of a column specifier.

For example, let’s rewrite the value of [cols="5,5,5"] as a column multiplier.

Example 228. Represent [cols="5,5,5"] using a column multiplier

[cols="3*"] ①

① Assign an integer to cols that represents the number of columns in the table. Enter the multi­
plier operator (*) directly after the integer.

The integer 3, combined with the * operator, indicates that the table will contain three columns of
equal width.

You can use a multiplier in a comma-separated list with column specifiers, too. In Example 229, the
first column is represented by a column specifier, and the next three columns are represented by a
multiplier.

Add Columns to a Table | 277

Example 229. Assign a column specifier and a column multiplier to cols

[cols="5,3*"]
|===
|Column 1 |Column 2 |Column 3 |Column 4

|Cell in column 1
|Cell in column 2
|Cell in column 3
|Cell in column 4
|===

As shown below, Example 229 creates a table containing a wide first column followed by three
columns of equal width.

Result of Example 229

Column 1 Column 2 Column 3 Column 4

Cell in column 1 Cell in col­
umn 2

Cell in col­
umn 3

Cell in col­
umn 4

Alignment and style column operators

AsciiDoc provides operators that control the positioning and style of column content when the cols
attribute is set. A column specifier or multiplier can contain these optional operators for one or
more of the following properties:

• horizontal alignment

• vertical alignment

• content style

Many of these operators can be applied to individual cells as well.

Specify the number of columns using the first row

When all of the columns in a table use the default width, alignment, and style values, you don’t
need to set the cols attribute. Instead, you can implicitly declare the number of columns by enter­
ing all of the first row’s cells on the same line. The processor will derive the number columns from
the number of cells in this row. Example 230 uses its first row to indicate that it has three columns.

Example 230. Create a table with three columns using its first row

|===
①
|Cell in column 1, row 1 |Cell in column 2, row 1 |Cell in column 3, row 1 ②

|Cell in column 1, row 2 ③
|Cell in column 2, row 2
|Cell in column 3, row 2

278 | Add Columns to a Table

|===

① After the opening delimiter, insert an empty line before the first row, unless you want the first
row to be treated as header row.

② Enter all of the first row’s cells on a single line. Each cell represents one column.

③ The cells in subsequent rows don’t need to be entered on a single line.

The table in Example 230 has three columns since its first row contains three cells.

Result of Example 230

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Adjust Column Widths

Column width

The width of a column is assigned by its column specifier. The value of a column’s width is either
an integer or a percentage. The default column width is 1. The integer or percentage represents the
width of the column in proportion to the other columns within the total width of the table. The total
width of a table is backend dependent. When using the HTML5 backend with the default Asciidoc­
tor stylesheet, tables stretch the width of the page body unless the table width attribute is explicitly
set.

Assign column widths using integers

To assign widths to the columns in a table, set the cols attribute and assign it a list of comma-sepa­
rated column specifiers using integers.

Example 231. Assign column widths using integers

[cols="2,1,3"]
|===
|Column 1 |Column 2 |Column 3

|This column has a proportional width of 2
|This column has a proportional width of 1
|This column has a proportional width of 3
|===

As seen below, the columns stretch across the width of the page according to their proportional
widths.

Result of Example 231

Add Columns to a Table | 279

Column 1 Column 2 Column 3

This column has a proportional
width of 2

This column
has a propor­
tional width of
1

This column has a proportional width of 3

Increase or decrease the width of a column

To increase the width of a column, use a bigger integer in the column’s specifier. Let’s make column
1 from Example 231 the largest column in the table by increasing its width from 2 to 6 in Example
232.

Example 232. Increase the width of a column

[cols="6,1,3"]
|===
|Column 1 |Column 2 |Column 3

|This column has a proportional width of 6
|This column has a proportional width of 1
|This column has a proportional width of 3
|===

Below, the result of Example 232 shows that column 1 is now much wider than column 3.

Result of Example 232

Column 1 Column
2

Column 3

This column has a proportional width of 6 This col­
umn has
a pro­
por­
tional
width of
1

This column has a propor­
tional width of 3

To decrease the width of a column, use a smaller integer in its specifier. In Example 233, let’s make
the width of column 3 smaller, but not quite as small as column 2, by decreasing its width from 3 to
2.

Example 233. Decrease the width of a column

[cols="6,1,2"]
|===
|Column 1 |Column 2 |Column 3

|This column has a proportional width of 6
|This column has a proportional width of 1

280 | Add Columns to a Table

|This column has a proportional width of 2
|===

The columns, displayed in the table below, have adjusted across the width of the page according to
their proportional widths.

Result of Example 233

Column 1 Column 2 Column 3

This column has a proportional width of 6 This col­
umn has
a propor­
tional
width of 1

This column has a
proportional width
of 2

Change column widths using percentage values

Column widths can be assigned using a percentage between 1% and 100%. Like with integer values,
set cols and assign it a list of comma-separated column specifiers using percentages.

Example 234. Assign column widths using percentages

[cols="15%,30%,55%"]
|===
|Column 1 |Column 2 |Column 3

|This column has a width of 15%
|This column has a width of 30%
|This column has a width of 55%
|===

As seen in the table below, the columns stretch across the width of the page according to the per­
centage assigned via their column specifiers.

Result of Example 234

Column 1 Column 2 Column 3

This column
has a width
of 15%

This column has a width of
30%

This column has a width of 55%

When assigning percentages to cols, you don’t have to include the percent sign (%). For instance,
both [cols="15%,30%,55%"] and [cols="15,30,55"] are valid.

Align Content by Column

The alignment operators allow you to horizontally and vertically align a column’s content. They’re
applied to a column specifier and assigned to the cols attribute.

Add Columns to a Table | 281

Horizontal alignment operators

Content can be horizontally aligned to the left or right side of the column as well as the center of
the column.

Flush left operator (<)

The less-than sign (<) left aligns the content. This is the default horizontal alignment.

Flush right operator (>)

The greater-than sign (>) right aligns the content.

Center operator (^)

The caret (^) centers the content.

A horizontal alignment operator is entered in front a vertical alignment operator (if present) and in
front of a column’s width (if present). If the number of columns is assigned using a multiplier (
<n>*), the horizontal alignment operator is placed directly after the multiplier operator (*).

• [cols="2,^1"] A horizontal alignment operator is placed in front of the column width.

• [cols=">.^1,2"] A horizontal alignment operator is placed in front of a vertical alignment oper­
ator.

• [cols=">,^"] When a column width isn’t specified, a horizontal alignment operator can repre­
sent both the column and the column content’s alignment.

• [cols="3*>"] The horizontal alignment operator is placed directly after a multiplier.

Center content horizontally in a column

To horizontally center the content in a column, place the ^ operator at the beginning of the col­
umn’s specifier.

Example 235. Center column content horizontally

[cols="^4,1"]
|===
|This content is horizontally centered.
|There isn't a horizontal alignment operator on this column's specifier, so the column
falls back to the default horizontal alignment.
Content is left-aligned by default.
|===

The table from Example 235 is rendered below.

Result of Example 235

282 | Add Columns to a Table

This content is horizontally centered. There isn’t a hori­
zontal alignment
operator on this
column’s specifier,
so the column falls
back to the default
horizontal align­
ment. Content is
left-aligned by
default.

When the columns are specified using the multiplier, place the ^ operator after the multiplier oper­
ator (*).

Example 236. Horizontal alignment and multiplier operator order

[cols="2*^",options=header]
|===
|Column name
|Column name

|This content is horizontally centered.
|This content is also horizontally centered.
|===

The table from Example 236 is rendered below.

Result of Example 236

Column name Column name

This content is horizontally centered. This content is also horizontally centered.

Right align content in a column

To align the content in a column to its right side, place the > operator in front of the column’s speci­
fier.

Example 237. Right align column content

[cols=">4,1"]
|===
|This content is aligned to the right side of the column.
|There isn't a horizontal alignment operator on this column's specifier, so the column
falls back to the default horizontal alignment.
Content is left-aligned by default.
|===

The table Example 237 is rendered below.

Add Columns to a Table | 283

Result of Example 237

This content is aligned to the right side of the column. There isn’t a hori­
zontal alignment
operator on this
column’s specifier,
so the column falls
back to the default
horizontal align­
ment. Content is
left-aligned by
default.

When the columns are specified using the multiplier, place the > operator after the multiplier oper­
ator (*).

Example 238. Right alignment and multiplier operator order

[cols="2*>",options=header]
|===
|Column name
|Column name

|This content is aligned to the right side of the column.
|This content is also aligned to the right side of the column.
|===

The table from Example 238 is rendered below.

Result of Example 238

Column name Column name

This content is aligned to the right side of the
column.

This content is also aligned to the right side of
the column.

Vertical alignment operators

Content can be vertically aligned to the top or bottom of a column’s cells as well as the center of a
column. Vertical alignment operators always begin with a dot (.).

Flush top operator (.<)

The dot and less-than sign (.<) aligns the content to the top of the column’s cells. This is the
default vertical alignment.

Flush bottom operator (.>)

The dot and greater-than sign (.>) aligns the content to the bottom of the column’s cells.

Center operator (.^)

The dot and caret (.^) centers the content vertically.

284 | Add Columns to a Table

A vertical alignment operator is entered directly after a horizontal alignment operator (if present)
and before a column’s width (if present). If the number of columns is assigned using a multiplier
(<n>*), the vertical alignment operator is placed directly after the horizontal alignment operator (if
present). Otherwise, it’s placed directly after the multiplier operator (*).

• [cols="2,.^1"] A vertical alignment operator is placed in front of the column width.

• [cols=">.^1,2"] The vertical alignment operator is placed after the horizontal alignment opera­
tor but before the column width.

• [cols=".^,.>"] When a column width doesn’t need to be specified, a vertical alignment operator
can represent both the column and the column content’s alignment.

• [cols="3*.>"] The vertical alignment operator is placed directly after a multiplier unless there
is a horizontal alignment operator. Then it’s placed after the horizontal alignment operator,
(e.g., [cols="3*^.>"])

Align content to the bottom of a column’s cells

To align the content in a column to the bottom of each cell, place the .> operator directly in front of
the column’s width.

Example 239. Bottom align column content

[cols=".>2,1"]
|===
|This content is vertically aligned to the bottom of the cell.
|There isn't a vertical alignment operator on this column's specifier, so the column
falls back to the default vertical alignment.
Content is top-aligned by default.
|===

The table from Example 239 is rendered below.

Result of Example 239

This content is vertically aligned to the bottom of the cell.

There isn’t a vertical alignment
operator on this column’s speci­
fier, so the column falls back to
the default vertical alignment.
Content is top-aligned by
default.

Center content vertically in a column

To vertically center the content in a column, place the .^ operator directly in front of the column’s
width.

Example 240. Center column content vertically

[cols=".^2,1"]
|===

Add Columns to a Table | 285

|This content is centered vertically in the cell.
|There isn't a vertical alignment operator on this column's specifier, so the column
falls back to the default vertical alignment.
Content is top-aligned by default.
|===

The table from Example 240 is rendered below.

Result of Example 240

This content is centered vertically in the cell.

There isn’t a vertical alignment
operator on this column’s speci­
fier, so the column falls back to
the default vertical alignment.
Content is top-aligned by
default.

To vertically align the content to the middle of the cells in all of the columns, enter the .^ operator
after the multiplier.

Example 241. Vertical alignment and multiplier operator order

[cols="2*.^",options=header]
|===
|Column name
|Column name

|This content is vertically centered.
|This content is also vertically centered.
|===

The table from Example 241 is rendered below.

Result of Example 241

Column name Column name

This content is centered vertically in the cell.
This content is also centered vertically in the
cell.

When a horizontal alignment operator is also applied to the multiplier, then the vertical alignment
operator is placed directly after the horizontal operator (e.g., [cols="2*>.^"]).

Apply horizontal and vertical alignment operators to the same column

A column can have a vertical and horizontal alignment operator placed on its specifier. The hori­
zontal operator always precedes the vertical operator. Both operators precede the column width.
When a multiplier is used, the operators are placed after the multiplier.

286 | Add Columns to a Table

Example 242. Horizontally and vertically align column content

[cols="^.>2,1,>.^1"]
|===
|Column name |Column name |Column name

|This content is centered horizontally and aligned to the bottom
of the cell.
|There aren't any alignment operators on this column's specifier,
so the column falls back to the default alignments.
The default horizontal alignment is left-aligned.
The default vertical alignment is top-aligned.
|This content is aligned to the right side of the cell and
centered vertically.
|===

The table from Example 242 is rendered below.

Result of Example 242

Column name Column name Column name

This content is centered horizontally and
aligned to the bottom of the cell.

There aren’t any align­
ment operators on this
column’s specifier, so
the column falls back to
the default alignments.
The default horizontal
alignment is left-
aligned. The default
vertical alignment is
top-aligned.

This content is aligned
to the right side of the

cell and centered verti­
cally.


If there is an alignment operator on a cell’s specifier, it will override the column’s
alignment operator.

Format Content by Column

A column style operator is applied to a column specifier and assigned to the cols attribute.

Column styles and their operators

You can style all of the content in a column by adding a style operator to a column’s specifier.

Add Columns to a Table | 287

Style Operator Description

AsciiDoc a Supports block elements (lists,
delimited blocks, and block
macros). This style effectively
creates a nested, standalone
AsciiDoc document. The parent
document’s implicit attributes,
such as doctitle, are shadowed
and custom attributes are
inherited.

Default d All of the markup that is per­
mitted in a paragraph (i.e.,
inline formatting, inline
macros) is supported.

Emphasis e Text is italicized.

Header h Applies the header semantics
and styles to the text and cell
borders.

Literal l Content is treated as if it were
inside a literal block.

Monospace m Text is rendered using a mono­
space font.

Strong s Text is bold.

When a style operator isn’t explicitly applied to a column specifier, the d style is assigned automati­
cally and the column is processed as paragraph text.

Apply a style operator to a column

A style operator is always placed in the last position on a column’s specifier or multiplier.

• [cols=">e,.^3s"] A style operator is placed directly after any other operators and the column
width in the column’s specifier.

• [cols="h,e"] When a column width isn’t specified, the style operator can represent both the col­
umn and the column’s content style.

• [cols="3*.>m"] When a multiplier is present, the style operator is placed after any horizontal
and vertical alignment operators.

Let’s apply a different style to each column in Example 243.

Example 243. Add a style operator to each column

[cols="h,m,s,e"]
|===
|Column 1 |Column 2 |Column 3 |Column 4

288 | Add Columns to a Table

|This column's content and borders are rendered using the table header (`h`) styles.
|This column's content is rendered using a monospace font (m).
|This column's content is bold (`s`).
|This column's content is italicized (`e`).

|This column's content and borders are rendered using the table header (`h`) styles.
|This column's content is rendered using a monospace font (m).
|This column's content is bold (`s`).
|This column's content is italicized (`e`).
|===

The table from Example 243 is displayed below. Note that the style applied to each column doesn’t
affect the header row or override any inline formatting.

Result of Example 243

Column 1 Column 2 Column 3 Column 4

This column’s content
and borders are ren­
dered using the table
header (h) styles.

This column’s content
is rendered using a
monospace font (m).

This column’s content
is bold (s).

This column’s content is
italicized (e).

This column’s content
and borders are ren­
dered using the table
header (h) styles.

This column’s content
is rendered using a
monospace font (m).

This column’s content
is bold (s).

This column’s content is
italicized (e).

Additionally, if a cell specifier contains a style operator, that style will override a column’s style
operator.

Use AsciiDoc block elements in a column

To use AsciiDoc block elements, such as delimited source blocks and lists, in a column, place the
lowercase letter a on the column specifier.

Example 244. Apply the AsciiDoc block style operator to the first column

[cols="2a,2"]
|===
|Column with the `a` style operator applied to its specifier |Column using the default
style

|
* List item 1
* List item 2
* List item 3
|
* List item 1
* List item 2
* List item 3

Add Columns to a Table | 289

|
[source,python]

import os
print "%s" %(os.uname())

|
[source,python]

import os
print ("%s" %(os.uname()))

|===

The AsciiDoc block style effectively creates a nested, standalone AsciiDoc document in each cell in
the column. The parent document’s implicit attributes, such as doctitle, are shadowed and custom
attributes are inherited.

Result of Example 244

Column with the a style operator applied to
its specifier

Column using the default style

• List item 1

• List item 2

• List item 3

* List item 1 * List item 2 * List item 3

import os
print "%s" %(os.uname())

[source,python] ---- import os print ("%s"
%(os.uname())) ----

You can also apply the AsciiDoc block style operator to individual cells.

Add Cells and Rows to a Table

Table cells

Each new cell in a table is declared with a cell separator. The default cell separator is a vertical bar
(|). All of the content entered after a cell separator is included in that cell until the processor
encounters a space followed by another vertical bar (|) or a new line that begins with a |.

Example 245. Creating table cells with the default cell separator

[cols="3,2,3"]
|===
|This content is placed in the first cell of column 1
|This line starts with a vertical bar so this content is placed in a new cell in
column 2 |When the processor encounters a whitespace followed by a vertical bar it
ends the previous cell and starts a new cell

290 | Add Cells and Rows to a Table

|===

When the processor encounters another |, it creates a new cell in the next consecutive column.
Once the processor reaches the last column assigned to the table, the next cell it encounters is
placed in a new row. Taking into account any spans, which are applied via a cell specifier, each row
consists of the same number of cells.

Cell specifiers and operators

A cell specifier is a positional attribute placed directly in front of a cell separator that represents
the position and style properties assigned to a cell’s content. In the example below, a horizontal
alignment operator and style operator have been assigned to the first cell’s specifier.

Example 246. Using cell specifiers

[cols="2*"]
|===
>s|This cell's specifier indicates that this cell's content is right-aligned and bold.
|The cell specifier on this cell hasn't been set explicitly, so the default
properties are applied.
|===

AsciiDoc provides operators to control the following cell properties:

• span

• duplication

• horizontal alignment

• vertical alignment

• content style

A cell specifier only applies to the cell it’s placed on, not to all of the cells in the same row. Also, the
operator in a cell specifier will override the operator in a column specifier if they belong to the
same property.

Create a table cell

In this section, we’ll set up a table and add two rows of cells to it. First, let’s create two cells in
Example 247 and see how they get arranged into a row.

Example 247. Add two cells to a table

[cols="1,1"] ①
|===
|This cell is in column 1, row 1 ②
|This cell is in column 2, row 1 ③
|===

Add Cells and Rows to a Table | 291

① The table has two columns because two column specifiers are assigned to the cols attribute.

② The processor places this cell in the first column and row of the table because the vertical bar (|)
at the beginning of this cell is the first cell separator the processor encounters after the opening
table delimiter (|===).

③ This is the second | the processor encounters, so this cell is placed in the second column of the
first row.

Though the two cells in Example 247 were entered on separate lines, the processor places them in
the same row.

Result of Example 247

This cell is in column 1, row 1 This cell is in column 2, row 1

Since the number of columns in Example 247 is set to two by the cols attribute, and there are two
cells entered in the table, the first row is complete. Now, let’s add two more cells to the table.

Example 248. Add two more cells to a table

[cols="1,1"]
|===
|This cell is in column 1, row 1
|This cell is in column 2, row 1
①
|This cell is in column 1, row 2 ②
| This cell is in column 2, row 2 ③
|===

① Separate rows by one or more empty lines.

② The processor places this cell on the second row because the table has two columns and this is
the third cell separator (|) it encounters.

③ Any leading or trailing spaces around the cell content is stripped by the processor.

The table from Example 248 now has four cells arranged into two consecutive rows.

Result of Example 248

This cell is in column 1, row 1 This cell is in column 2, row 1

This cell is in column 1, row 2 This cell is in column 2, row 2

The cells in a row can be entered on the same line or consecutive lines because the row a cell in
placed on is determined by the number of columns in a table and the order in which the processor
encounters the cell’s separator (|).

Enter a row’s cells on a single line

You can enter a row’s cells on a single line. When entering cells on a single line, at least one space
must be entered between the last character of the previous cell’s content and the cell separa­
tor (|) of the next cell.

292 | Add Cells and Rows to a Table

Example 249. Cells entered on the same line

|===
|Column 1 |Column 2 |Column 3 ① ②

|Cell in column 1, row 2 |Cell in column 2, row 2 |Cell in column 3, row 2 ③

|Cell in column 1, row 3 ④
|Cell in column 2, row 3 |Cell in column 3, row 3
|===

① Since cols is not set, the first row in this table must have the cells entered on a single line in
order to implicitly assign three columns to the table.

② The first row is entered on the line directly after the opening table delimiter (|===) and followed
by an empty line. This automatically assigns the header option to it.

③ When multiple cells are entered on a single line, enter at least one space between the last char­
acter of the previous cell’s content and the cell separator (|) of the next cell.

④ A row’s cells can be entered on a combination of lines as long as the lines are consecutive.

The table created in Example 249 contains three columns and three rows.

Result of Example 249

Column 1 Column 2 Column 3

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

Any leading and trailing spaces around the cell content are stripped and don’t affect the table’s lay­
out when rendered.

Enter a row’s cells on consecutive lines

The cells in a row can be entered on consecutive, individual lines. When using this method, remem­
ber to either set the cols attribute or enter the first row’s cells on a single line.

Example 250. Cells on consecutive, individual lines

[cols="3*"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Add Cells and Rows to a Table | 293

The cols attribute in Example 250 is assigned a multiplier of 3*, indicating that this table has three
columns.

Result of Example 250

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Entering cells on consecutive lines can improve the readability (and debugging) of your raw Asci­
iDoc content when you’re applying specifiers to the cells, using AsciiDoc block elements in the cells,
or entering a lot of content into the cells.

Create a Header Row

The first row of a table is promoted to a header row if the header value is assigned to the table’s
options attribute. You can assign header to a table’s first row explicitly or implicitly.



The header row ignores any style operators assigned via column and cell speci­
fiers. It also ignores alignment operators assigned to the table’s column specifiers;
however, any alignment operators assigned to a cell specifier in the header row
are applied.

Explicitly assign header to the first row

The header row semantics and styles are explicitly assigned to the first row in a table by assigning
header to the options attribute. The options attribute is set in the table’s attribute list using the short­
hand (%value) or formal syntax (options="value").

The options attribute is represented by the percent sign (%) when it’s set using the shorthand syntax.
In Example 251, header is assigned to using the shorthand syntax for options.

Example 251. Table with header assigned using the shorthand syntax

[%header,cols="2,2,1"] ①
|===
|Column 1, header row
|Column 2, header row
|Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

① Values assigned using the shorthand syntax must be entered before the cols attribute (or any
other named attributes) in a table’s attribute list, otherwise the processor will ignore them.

The table from Example 251 is displayed below.

Result of Example 251

294 | Add Cells and Rows to a Table

Column 1, header row Column 2, header row Column 3, header
row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3,
row 2

In Example 252, the options attribute is set and assigned the header value using the formal syntax.
The options attribute accepts a comma-separated list of values.

Example 252. Table with header assigned to the options attribute

[cols="2*",options="header"]
|===
|Column 1, header row
|Column 2, header row

|Cell in column 1, row 2
|Cell in column 2, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|===

The first row of the table in Example 252 is rendered using the corresponding header styles and
semantics.

Result of Example 252

Column 1, header row Column 2, header row

Cell in column 1, row 2 Cell in column 2, row 2

Cell in column 1, row 3 Cell in column 2, row 3

Implicitly assign header to the first row

You can implicitly define a header row based on how you layout the table. The following conven­
tions determine when the first row automatically becomes the header row:

1. The first line of content inside the table delimiters is not empty.

2. The second line of content inside the table delimiters is empty.

Example 253. First row is implicitly assigned header

|===
|Column 1, header row |Column 2, header row

|Cell in column 1, row 2
|Cell in column 2, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3

Add Cells and Rows to a Table | 295

|===

As seen in the result below, if all of these rules hold true, then the first row of the table is treated as
a header row.

Result of Example 253

Column 1, header row Column 2, header row

Cell in column 1, row 2 Cell in column 2, row 2

Cell in column 1, row 3 Cell in column 2, row 3

Deactivate the implicit assignment of header

To suppress the implicit behavior of promoting the first row to a header row, assign the value
noheader to the options attribute using the formal (options=noheader) or shorthand (%noheader) syn­
tax. In Example 254, noheader is assigned using the shorthand syntax.

Example 254. Deactivate implicit header row with noheader

[%noheader]
|===
|Cell in column 1, row 1 |Cell in column 2, row 1

|Cell in column 1, row 2 |Cell in column 2, row 2
|===

The table from Example 254 is displayed below.

Result of Example 254

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Create a Footer Row

The last row of a table is promoted to a footer row if the footer value is assigned to the table’s
options attribute.

Assign footer to the last row

The footer row semantics and styles are applied to the last row in a table by assigning footer to the
options attribute. The options attribute is set in the table’s attribute list using the shorthand (%value)
or formal syntax (options="value").

The options attribute is represented by the percent sign (%) when it’s set using the shorthand syntax.
In Example 255, footer is assigned using the shorthand syntax for options.

296 | Add Cells and Rows to a Table

Example 255. Table with footer assigned using the shorthand syntax

[%header%footer,cols="2,2,1"] ①
|===
|Column 1, header row
|Column 2, header row
|Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Column 1, footer row
|Column 2, footer row
|Column 3, footer row
|===

① Values assigned using the shorthand syntax must be entered before the cols attribute (or any
other named attributes) in a table’s attribute list, otherwise the processor will ignore them.

The table from Example 255 is displayed below.

Result of Example 255

Column 1, header row Column 2, header row Column 3, header
row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3,
row 2

Column 1, footer row Column 2, footer row Column 3, footer
row

In Example 256, the options attribute is set and assigned the footer value using the formal syntax.
The options attribute accepts a comma-separated list of values.

Example 256. Table with footer assigned to the options attribute

[options="footer"]
|===
|Column 1, header row |Column 2, header row

|Cell in column 1, row 2
|Cell in column 2, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3

|Column 1, footer row
|Column 2, footer row
|===

Add Cells and Rows to a Table | 297

The last row of the table in Example 256 is rendered using the corresponding footer styles.

Result of Example 256

Column 1, header row Column 2, header row

Cell in column 1, row 2 Cell in column 2, row 2

Cell in column 1, row 3 Cell in column 2, row 3

Column 1, footer row Column 2, footer row

Align Content by Cell

The alignment operators are applied to a cell’s specifier and allow you to horizontally and vertically
align a cell’s content.

Horizontal alignment operators

Content can be horizontally aligned to the left or right side of the cell as well as the center of the
cell.

Flush left operator (<)

The less-than sign (<) aligns the content to the left side of the cell. This is the default horizontal
alignment.

Flush right operator (>)

The greater-than sign (>) aligns the content to the right side of the cell.

Center operator (^)

The caret (^) centers the content horizontally in the cell.

A horizontal alignment operator is entered after a span or duplication operator (if present) and in
front a vertical alignment operator (if present).

<factor><horizontal alignment operator><vertical alignment
operator><style operator>|<cell’s content>

Center content horizontally in a cell

To horizontally center the content in a cell, place the ^ operator in front of the cell’s separator (|).
Don’t insert any spaces between the | and the operator.

Example 257. Center the content of a cell horizontally

|===
|Column Name |Column Name

^|This content is horizontally centered because the cell specifier includes the `+^+`
operator.
|There isn't a horizontal alignment operator on this cell specifier, so the cell falls

298 | Add Cells and Rows to a Table

back to the default horizontal alignment.
Content is aligned to the left side of the cell by default.
|===

The table from Example 257 is rendered below.

Result of Example 257

Column Name Column Name

This content is horizontally centered because
the cell specifier includes the ^ operator.

There isn’t a horizontal alignment operator on
this cell specifier, so the cell falls back to the
default horizontal alignment. Content is aligned
to the left side of the cell by default.

If the cell specifier includes a span (<n>`) or duplication (`<n>*`), place the `^+ directly after the
span or duplication operator.

Example 258. Center content horizontally in spanned columns and duplicated cells

|===
|Column Name |Column Name

2+^|This cell spans two columns, and its content is horizontally centered because the
cell specifier includes the `+^+` operator.
2*^|This content is duplicated in two adjacent columns.
Its content is horizontally centered because the cell specifier
includes the `+^+` operator.
|===

The table from Example 258 is rendered below.

Result of Example 258

Column Name Column Name

This cell spans two columns, and its content is horizontally centered because the cell specifier
includes the ^ operator.

This content is duplicated in two adjacent
columns. Its content is horizontally centered

because the cell specifier includes the ^ opera­
tor.

This content is duplicated in two adjacent
columns. Its content is horizontally centered

because the cell specifier includes the ^ opera­
tor.

Align the content of a cell to the right

To align the content in a cell to its right side, place the > operator in front of the cell’s separator (|),
but after a span (<n>`) or duplication (`<n>*+) operator (if present). Don’t insert any spaces
between the | and the operators.

Add Cells and Rows to a Table | 299

Example 259. Right align the content of a cell

|===
|Column Name |Column Name

>|This content is aligned to the right side of the cell because the cell specifier
includes the `>` operator.
|There isn't a horizontal alignment operator on this cell specifier, so the cell falls
back to the default horizontal alignment.
Content is aligned to the left side of the cell by default.

2+>|This cell spans two columns.

Its content is aligned to the right because the cell specifier includes the `>`
operator.
The `>` operator must be placed directly after the span operator (`+`).
|===

The table from Example 259 is rendered below.

Result of Example 259

Column Name Column Name

This content is aligned to the right side of the
cell because the cell specifier includes the >

operator.

There isn’t a horizontal alignment operator on
this cell specifier, so the cell falls back to the
default horizontal alignment. Content is aligned
to the left side of the cell by default.

This cell spans two columns.

Its content is aligned to the right because the cell specifier includes the > operator. The > operator
must be placed directly after the span operator (+).

Vertical alignment operators

Content can be vertically aligned to the top or bottom of a cell as well as the center of a cell. Vertical
alignment operators always begin with a dot (.).

Flush top operator (.<)

The dot and less-than sign (.<) aligns the content to the top of the cell. This is the default vertical
alignment.

Flush bottom operator (.>)

The dot and greater-than sign (.>) aligns the content to the bottom of the cell.

Center operator (.^)

The dot and caret (.^) centers the content vertically.

A vertical alignment operator is entered after a horizontal alignment operator (if present) and in
front of a style operator (if present).

300 | Add Cells and Rows to a Table

<factor><horizontal alignment operator><vertical alignment
operator><style operator>|<cell’s content>

Align content to the bottom of a cell

To align the content to the bottom of a cell, place the .> operator in front of the cell’s separator (|).
Don’t insert any spaces between the | and the operator.

Example 260. Align content to the bottom of a cell

[cols="2,1"]
|===
|Column Name |Column Name

.>|This content is aligned to the bottom of the cell because the cell specifier
includes the `.>` operator.
|There isn't a vertical alignment operator on this cell specifier, so the cell falls
back to the alignment assigned via the column specifier or the default vertical
alignment.
Content is aligned to the top of the cell by default.
|===

The table from Example 260 is rendered below.

Result of Example 260

Column Name Column Name

This content is aligned to the bottom of the cell because the cell
specifier includes the .> operator.

There isn’t a vertical alignment
operator on this cell specifier,
so the cell falls back to the
alignment assigned via the col­
umn specifier or the default
vertical alignment. Content is
aligned to the top of the cell by
default.

If the cell specifier includes a span (<n>`) or duplication (`<n>*+), place the .> after the span or
duplication operator.

Example 261. Align content to the bottom of a cell that spans rows

|===
|Column Name |Column Name

|There isn't a vertical alignment operator on this cell specifier, so the content is
aligned to the top of the cell by default.

.2+.>|This cell spans two rows, and its content is aligned to the bottom because the
cell specifier includes the `.>` operator.

Add Cells and Rows to a Table | 301

|This content is aligned to the top of the cell by default.
|===

The table from Example 261 is rendered below.

Result of Example 261

Column Name Column Name

There isn’t a vertical alignment operator on this
cell specifier, so the content is aligned to the top
of the cell by default.

This cell spans two rows, and its content is
aligned to the bottom because the cell specifier
includes the .> operator.

This content is aligned to the top of the cell by
default.

Center content vertically in a cell

To vertically center the content in a cell, place the .^ operator in front of the cell’s separator (|).
Don’t insert any spaces between the | and the operator.

Example 262. Center the content of a cell vertically

|===
|Column Name |Column Name

.^|This content is vertically centered because the cell specifier includes the `+.^+`
operator.
|There isn't a vertical alignment operator on this cell specifier, so the cell falls
back to the default vertical alignment.
Content is aligned to the top of the cell by default.
|===

The table from Example 262 is rendered below.

Result of Example 262

Column Name Column Name

This content is vertically centered because the
cell specifier includes the .^ operator.

There isn’t a vertical alignment operator on this
cell specifier, so the cell falls back to the default
vertical alignment. Content is aligned to the top
of the cell by default.

Apply horizontal and vertical alignment operators to the same cell

A cell can have a vertical and horizontal alignment operator included in its cell specifier. The hori­
zontal operator always precedes the vertical operator.

302 | Add Cells and Rows to a Table

Example 263. Align cells horizontally and vertically

|===
|Column 1 |Column 2 |Column 3

^.>|The specifier for this cell is `^.>`.
The content is centered horizontally and aligned to the bottom of the cell.
|There aren't any alignment operators on this cell's specifier, so the cell falls back
to the default alignments.
The default horizontal alignment is the left side of the cell.
The default vertical alignment is the top of the cell.
>.^|The specifier for this cell is `>.^`.
The content is aligned to the right side of the cell and centered vertically.

2.3+^.^|The specifier for this cell is `pass:[2.3+^.^]`.
It spans two columns and three rows.

Its content is centered horizontally and vertically.
3*.>|The specifier for this cell is `3*.>`.
The cell is duplicated in three consecutive rows in the same column.
It's content is aligned to the bottom of the cell.
|===

The table from Example 263 is rendered below.

Result Example 263

Column 1 Column 2 Column 3

The specifier for this cell is ^.>.
The content is centered hori­

zontally and aligned to the bot­
tom of the cell.

There aren’t any alignment
operators on this cell’s specifier,
so the cell falls back to the
default alignments. The default
horizontal alignment is the left
side of the cell. The default ver­
tical alignment is the top of the
cell.

The specifier for this cell is >.^.
The content is aligned to the

right side of the cell and cen­
tered vertically.

Add Cells and Rows to a Table | 303

Column 1 Column 2 Column 3

The specifier for this cell is 2.3+^.^. It spans two columns and
three rows.

Its content is centered horizontally and vertically.

The specifier for this cell is 3*.>.
The cell is duplicated in three
consecutive rows in the same
column. It’s content is aligned
to the bottom of the cell.

The specifier for this cell is 3*.>.
The cell is duplicated in three
consecutive rows in the same
column. It’s content is aligned
to the bottom of the cell.

The specifier for this cell is 3*.>.
The cell is duplicated in three
consecutive rows in the same
column. It’s content is aligned
to the bottom of the cell.

Format Content by Cell

Cell styles and their operators

You can style all of the content in an individual cell by adding a style operator to the cell’s specifier.

Style Operator Description

AsciiDoc a Supports block elements (lists,
delimited blocks, and block
macros). This style effectively
creates a nested, standalone
AsciiDoc document. The parent
document’s implicit attributes,
such as doctitle, are shadowed
and custom attributes are
inherited.

Default d All of the markup that is per­
mitted in a paragraph (i.e.,
inline formatting, inline
macros) is supported.

Emphasis e Text is italicized.

Header h Applies the header semantics
and styles to the text and cell
borders.

Literal l Content is treated as if it were
inside a literal block.

304 | Add Cells and Rows to a Table

Style Operator Description

Monospace m Text is rendered using a mono­
space font.

Strong s Text is bold.

When a style operator isn’t explicitly assigned to a cell specifier (or column specifier), the cell falls
back to the default (d) style and is processed as regular paragraph text. (The explicit d style is only
needed if you want to revert the cell style based to a normal (default) cell when a style is applied to
the column.)

Apply a style to a table cell

The style operator is always entered last in a cell specifier. Don’t insert any spaces between the |
and the operator.

<factor><horizontal alignment operator><vertical alignment
operator><style operator>|<cell’s content>

Let’s apply a style operator to each cell in Example 264.

Example 264. Apply a style operator to a cell

|===
|Column 1 |Column 2

2*>m|This content is duplicated across two columns (2*) and aligned to the right side
of the cell (>).

It's rendered using a monospace font (m).

.3+^.>s|This cell spans 3 rows (`3+`).
The content is centered horizontally (`+^+`), vertically aligned to the bottom of the
cell (`.>`), and styled as strong (`s`).
e|This content is italicized (`e`).

m|This content is rendered using a monospace font (m).

s|This content is bold (`s`).
|===

The table from Example 264 is rendered below.

Result of Example 264

Add Cells and Rows to a Table | 305

Column 1 Column 2

This content is duplicated across two columns
(2*) and aligned to the right side of the cell

(>).

It’s rendered using a monospace font (m).

This content is duplicated across two columns
(2*) and aligned to the right side of the cell

(>).

It’s rendered using a monospace font (m).

This cell spans 3 rows (3+). The content is cen­
tered horizontally (^), vertically aligned to

the bottom of the cell (.>), and styled as
strong (s).

This content is italicized (e).

This content is rendered using a monospace
font (m).

This content is bold (s).

Override the column style on a cell

When you assign a style operator to a cell, it overrides the column’s style operator. In Example 265,
the style operator assigned to the first column is overridden on two cells. The header row also over­
rides style operators. However, inline formatting markup is applied in addition to the style speci­
fied by an operator.

Example 265. Override the column style using a cell style operator

[cols="m,m"] ①
|===
|Column 1, header row |Column 2, header row ②

|This content is rendered using a monospace font because the column's specifier
includes the `m` operator.
|This content is rendered using a monospace font because the column's specifier
includes the `m` operator.

s|This content is rendered as bold paragraph text because the `s` operator in the
cell's specifier overrides the style operator in the column specifier. ③
|*This content is rendered using a monospace font because the column's specifier
includes the `m` operator.
It's also bold because it's marked up with the inline syntax for bold formatting.* ④

d|This content is rendered as regular paragraph text because the `d` operator in the
cell's specifier overrides the style operator in the column specifier. ⑤
|This content is rendered using a monospace font because the column's specifier
includes the `m` operator.
|===

① The monospace operator (m) is assigned to both columns.

② The header row ignores any style operators assigned via column or cell specifiers.

③ The strong operator (s) is assigned to this cell’s specifier, overriding the column’s monospace
style.

④ Inline formatting is applied in addition to the style assigned via a column specifier.

⑤ The default operator (d) is assigned to this cell’s specifier, resetting it to the default text style.

306 | Add Cells and Rows to a Table

The table from Example 265 is displayed below.

Result of Example 265

Column 1, header row Column 2, header row

This content is rendered using a monospace
font because the column’s specifier includes
the m operator.

This content is rendered using a monospace
font because the column’s specifier includes
the m operator.

This content is rendered as bold paragraph
text because the s operator in the cell’s speci­
fier overrides the style operator in the col­
umn specifier.

This content is rendered using a monospace
font because the column’s specifier includes
the m operator. It’s also bold because it’s
marked up with the inline syntax for bold for­
matting.

This content is rendered as regular paragraph
text because the d operator in the cell’s specifier
overrides the style operator in the column speci­
fier.

This content is rendered using a monospace
font because the column’s specifier includes
the m operator.

Use AsciiDoc block elements in a table cell

To use AsciiDoc block elements, such as delimited source blocks and lists, in a cell, place the a oper­
ator directly in front of the cell’s separator (|). Don’t insert any spaces between the | and the opera­
tor. The a can also be specified on the column in the cols attribute on the table.

Example 266. Apply the AsciiDoc block style operator to two cells

|===
|Normal Style |AsciiDoc Style

|This cell isn't prefixed with an `a`, so the processor doesn't interpret the
following lines as an AsciiDoc list.

* List item 1
* List item 2
* List item 3

a|This cell is prefixed with an `a`, so the processor interprets the following lines
as an AsciiDoc list.

* List item 1
* List item 2
* List item 3

|This cell isn't prefixed with an `a`, so the processor doesn't interpret the listing
block delimiters or the `source` style.

[source,python]

import os
print ("%s" %(os.uname()))

Add Cells and Rows to a Table | 307

a|This cell is prefixed with an `a`, so the listing block is processed and rendered
according to the `source` style rules.

[source,python]

import os
print "%s" %(os.uname())

|===

The table from Example 266 is rendered below.

Result of Example 266

Normal Style AsciiDoc Style

This cell isn’t prefixed with an a, so the proces­
sor doesn’t interpret the following lines as an
AsciiDoc list.

* List item 1 * List item 2 * List item 3

This cell is prefixed with an a, so the processor
interprets the following lines as an AsciiDoc list.

• List item 1

• List item 2

• List item 3

This cell isn’t prefixed with an a, so the proces­
sor doesn’t interpret the listing block delimiters
or the source style.

[source,python] ---- import os print ("%s"
%(os.uname())) ----

This cell is prefixed with an a, so the listing
block is processed and rendered according to
the source style rules.

import os
print "%s" %(os.uname())

An AsciiDoc table cell effectively creates a nested document. As such, it inherits attributes from the
parent document. If an attribute is set or explicitly unset in the parent document, it cannot be modi­
fied in the AsciiDoc table cell. There are a handful of exceptions to this rule, which includes doc­
type, toc, notitle (and its complement, showtitle), and compat-mode. Any newly defined attributes
in the AsciiDoc table do not impact the attributes in the parent document. Instead, these attributes
are scoped to the table cell.

If the AsciiDoc table cell starts with a preprocessor directive, that directive should be placed on the
line after the cell separator. While it can be placed on the same line as the cell separator, that style
is not recommended. That’s because the preprocessor directive that starts after the cell separator
must be treated with special handling and is thus limited to a single line (for example, a multiline
preprocessor conditional is not allow in this case). By starting the contents of the AsciiDoc table cell
on the line after the cell separator, the contents will be parsed as normal.

Span Columns and Rows

A table cell can span more than one column and row.

308 | Add Cells and Rows to a Table

Span factor and operator

With a span a table cell can stretch across adjacent columns, rows, or a block of adjacent columns
and rows. A span consists of a span factor and a span operator.

The span factor indicates the number columns, rows, or columns and rows a cell should span.

Column span factor

A single integer (<n>) that represents the number of consecutive columns a cell should span.

Row span factor

A single integer prefixed with a dot (.<n>) that represents the number of consecutive rows a cell
should span.

Block span factor

Two integers (<n>.<n>) that represent a block of adjacent columns and rows a cell should span.
The first integer, <n>, is the column span factor. The second integer, which is prefixed with a dot,
.<n>, is the row span factor.

The span operator is a plus sign (+) placed directly after the span factor (<n>.<n>+). The span opera­
tor tells the converter to interpret the span factor as part of a span instead of a duplication.

A span is the first operator in a cell specifier.

<horizontal alignment operator><vertical alignment opera­
tor><style operator>|<cell’s content>

Span multiple columns

To have a cell span consecutive columns, enter the column span factor and span operator (<n>+) in
the cell specifier. Don’t insert any spaces between the span, any alignment or style operators (if
present), and the cell’s separator (|).

Example 267. Span three columns with a cell

|===
|Column 1, header row |Column 2, header row |Column 3, header row |Column 4, header
row

3+|This cell spans columns 1, 2, and 3 because its specifier contains a span of `3+`
|Cell in column 4, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|Cell in column 4, row 3
|===

The table from Example 267 is displayed below.

Add Cells and Rows to a Table | 309

Result of Example 267

Column 1, header row Column 2, header row Column 3, header row Column 4, header row

This cell spans columns 1, 2, and 3 because its specifier contains a span of
3+

Cell in column 4, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3 Cell in column 4, row 3

Span multiple rows

To have a cell span consecutive rows, enter the row span factor and span operator (.<n>+) in the cell
specifier. Remember to prefix the span factor with a dot (.). Don’t insert any spaces between the
span, any alignment or style operators (if present), and the cell’s separator (|).

Example 268. Span two rows with a cell

|===
|Column 1, header row |Column 2, header row

.2+|This cell spans rows 2 and 3 because its specifier contains a span of `.2+`
|Cell in column 2, row 2

|Cell in column 2, row 3

|Cell in column 1, row 4
|Cell in column 2, row 4
|===

The table from Example 268 is displayed below.

Result of Example 268

Column 1, header row Column 2, header row

This cell spans rows 2 and 3 because its specifier
contains a span of .2+

Cell in column 2, row 2

Cell in column 2, row 3

Cell in column 1, row 4 Cell in column 2, row 4

Span columns and rows

A single cell can span a block of adjacent columns and rows. Enter the column span factor (<n>), fol­
lowed by the row span factor (.<n>), and then the span operator (+).

Example 269. Span two columns and three rows with a single cell

|===
|Column 1, header row |Column 2, header row |Column 3, header row |Column 4, header
row

|Cell in column 1, row 2
2.3+|This cell spans columns 2 and 3 and rows 2, 3, and 4 because its specifier

310 | Add Cells and Rows to a Table

contains a span of `2.3+`
|Cell in column 4, row 2

|Cell in column 1, row 3
|Cell in column 4, row 3

|Cell in column 1, row 4
|Cell in column 4, row 4
|===

The table from Example 269 is displayed below.

Result of Example 269

Column 1, header row Column 2, header row Column 3, header row Column 4, header row

Cell in column 1, row 2 This cell spans columns 2 and 3 and rows 2, 3,
and 4 because its specifier contains a span of
2.3+

Cell in column 4, row 2

Cell in column 1, row 3 Cell in column 4, row 3

Cell in column 1, row 4 Cell in column 4, row 4

Duplicate Cells

The contents of a cell can be duplicated in consecutive cells.

Duplication factor and operator

The duplication factor and operator are applied to a cell’s specifier and allow you to clone a cell’s
content and properties across consecutive cells. A duplication is the first operator in a cell specifier.

<duplication factor><duplication operator><horizontal alignment operator><vertical align­
ment operator><style operator>|<cell’s content>

The duplication factor is a single integer (<n>) that indicates how many times the cell’s content
should be duplicated.

The duplication operator is an asterisk (*) placed directly after the duplication factor (<n>*). The
duplication operator tells the converter to interpret the duplication factor as part of a duplication
instead of a span.

Duplicate a cell and its properties

To duplicate a cell, enter the duplication factor and duplication operator (<n>*) in the cell specifier.
Don’t insert any spaces between the duplication, any alignment or style operators (if present), and
the cell’s separator (|).

Example 270. Duplicate the contents of two cells

|===
|Column 1, header row |Column 2, header row |Column 3, header row

Add Cells and Rows to a Table | 311

2*|This cell is duplicated in columns 1 and 2 because its specifier contains a
duplication of `2*`
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
3*e|This cell specifier contains the duplication `3*` and style operator `e`.

The cell's text is italicized and duplicated in column 3, row 3 and columns 1 and 2 on
row 4.

|Cell in column 3, row 4
|===

The table from Example 270 is displayed below.

Result of Example 270

Column 1, header row Column 2, header row Column 3, header row

This cell is duplicated in
columns 1 and 2 because its
specifier contains a duplication
of 2*

This cell is duplicated in
columns 1 and 2 because its
specifier contains a duplication
of 2*

Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 This cell specifier contains the
duplication 3* and style operator
e.

The cell’s text is italicized and
duplicated in column 3, row 3
and columns 1 and 2 on row 4.

This cell specifier contains the
duplication 3* and style operator
e.

The cell’s text is italicized and
duplicated in column 3, row 3
and columns 1 and 2 on row 4.

This cell specifier contains the
duplication 3* and style operator
e.

The cell’s text is italicized and
duplicated in column 3, row 3
and columns 1 and 2 on row 4.

Cell in column 3, row 4

Table Width
By default, a table will span the width of the content area.

Fixed width

To constrain the width of the table to a fixed value, set the width attribute in the table’s attribute list.
The width is an integer percentage value ranging from 1 to 100. The % sign is optional.

312 | Table Width

Example 271. Table with width set to 75%

[width=75%]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

Result of Example 271

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

Autowidth

Alternately, you can make the width fit the content by setting the autowidth option. The columns
inherit this setting, so individual columns will also be sized according to the content.

Example 272. Table using autowidth

[%autowidth]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

Result of Example 272

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

If you want each column to have an automatic width, but want the table to span the width of the

Table Width | 313

content area, add the stretch role to the table. (Alternatively, you can set the width attribute to 100%.)

Example 273. Full-width table with autowidth columns

[%autowidth.stretch]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

The table from Example 273 is rendered below. The columns are sized to the content, but the table
spans the width of the page.

Result of Example 273

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

 The autowidth option is not recognized by the DocBook converter.

Mix fixed and autowidth columns

If you want to apply autowidth only to certain columns, use the special value ~ as the width of the
column. In this case, width values are assumed to be a percentage value (i.e., 100-based).

Example 274. Table with fixed and autowidth columns

[cols="25h,~,~"]
|===
|small |as big as the column needs to be |the rest
|===

Result of Example 274

small as big as the column needs to be the rest

Table Borders
The borders on a table are controlled using the frame and grid block attributes. You can combine
these two attributes to achieve a variety of border styles for your tables.

314 | Table Borders

Frame

The border around a table is controlled using the frame attribute on the table. The frame attribute
defaults to the value all (implied value), which draws a border on each side of the table. This
default can be changed by setting the table-frame document attribute. You can override the default
value by setting the frame attribute on the table to the value all, ends, sides or none.

The ends value draws a border on the top and bottom of the table.

Example 275. Table with frame=ends

[frame=ends]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

Result of Example 275

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

The sides value draws a border on the right and left side of the table.

Example 276. Table with frame=sides

[frame=sides]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

Result of Example 276

Table Borders | 315

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

The none value removes the borders around the table.

Example 277. Table with frame=none

[frame=none]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

Result of Example 277

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

Grid

The borders between the cells in a table are controlled using the grid attribute on the table. The
grid attribute defaults to the value all (implied value), which draws a border between all cells. This
default can be changed by setting the table-grid document attribute. You can override the default
value by setting the grid attribute on the table to the value all, rows, cols or none.

The rows value draws a border between the rows of the table.

Example 278. Table with grid=rows

[grid=rows]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3

316 | Table Borders

|Cell in column 3, row 3
|===

Result of Example 278

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

The cols value draws borders between the columns.

Example 279. Table with grid=cols

[grid=cols]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

Result of Example 279

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

The none value removes all borders between the cells.

Example 280. Table with grid=none

[grid=none]
|===
|Column 1, header row |Column 2, header row |Column 3, header row

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3
|===

Table Borders | 317

Result of Example 280

Column 1, header row Column 2, header row Column 3, header row

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

Interaction with row and column spans

Using row and column spans may interfere with the placement of borders on a table. This is a limi­
tation of styling HTML using CSS.

When a cell extends into other rows or columns, that cell is not represented in the HTML for the
rows or columns it extends into. This is a problem if the cell reaches the boundary of the table. The
CSS selector only matches the cell where it starts and thus does not detect when it is touching the ta­
ble boundary. It therefore cannot add or remove the border as it would for a 1x1 cell (i.e., a cell con­
fined to a single row and column).

The interference with border placement caused by row and column spans does not always happen.
Borders on a table with a rowspan or colspan that reaches the table boundary will always work
correctly when the frame and grid are congruent. In this context, congruent means the frame and
grid are contributing borders to the same edges.

Here are those scenarios in which the frame and grid are congruent:

• frame=all, grid=all

• frame=all, grid=none

• frame=all, grid=rows

• frame=all, grid=cols

• frame=ends, grid=rows

• frame=sides, grid=cols

• frame=none, grid=none

If you use row and column spans in a table, you are strongly encouraged to use one of these frame
and grid combinations.

Table Striping
You can add zebra-striping to rows of a table. When this feature is enabled, the specified rows are
shaded using a background color to create a zebra striping effect.


In the HTML output, table striping is done using CSS and thus depends on the
stylesheet to supply the necessary styles. The default stylesheet for Asciidoctor
includes the necessary styles for table striping.

318 | Table Striping

Striping attributes

Which rows are striped is controlled using the stripes attribute on the table. The stripes attribute
defaults to the value none (implied value), which means rows are not striped by default. This default
can be changed by setting the table-stripes document attribute. You can override the default value
by setting the stripes attribute on the table.

The stripes attribute on a table and the table-stripes document attribute accept the following val­
ues:

• none - no rows are shaded (default)

• even - even rows are shaded

• odd - odd rows are shaded

• all - all rows are shaded

• hover - the row under the mouse cursor is shaded (HTML only)

stripes block attribute

In the following example, the stripes are enabled for even rows in the table body (the row that con­
tains A2 and B2).

[cols=2*,stripes=even]
|===
|A1
|B1
|A2
|B2
|A3
|B3
|===

Under the covers, the stripes attribute applies the CSS class stripes-<value> (e.g., stripes-none) to
the table tag. As a shorthand, you can simply apply the CSS class to the table directly using a role.

[.stripes-even,cols=2*]
|===
|A1
|B1
|A2
|B2
|A3
|B3
|===

Table Striping | 319

table-stripes attribute

If you want to apply stripes to all tables in the document, set the table-stripes attribute in the docu­
ment header. You can still override this setting per table.

= Document Title
:table-stripes: even

[cols=2*]
|===
|A1
|B1
|A2
|B2
|A3
|B3
|===

Table Orientation

Landscape

A table can be displayed in landscape (rotated 90 degrees counterclockwise) using the rotate option
(preferred).

[%rotate]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

A table can also be displayed in landscape using the orientation attribute.

[orientation=landscape]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Currently, this is only implemented by the DocBook backend (it sets the attribute orient="land").

320 | Table Orientation

Assign a Role to a Table
Like with all blocks, you can add a role to a table using the role attribute. The role attribute
becomes a CSS class when converted to HTML. The preferred shorthand for assigning the role
attribute is to put the role name in the first position of the block attribute list prefixed with a . char­
acter, as shown here:

[.name-of-role]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Nesting Tables
Table cells marked with the AsciiDoc table style (a) support nested tables in addition to normal
block content. To distinguish the inner table from the enclosing one, you need to use !=== as the ta­
ble delimiter and a cell separator that differs from that used for the enclosing table. The default cell
separator for a nested table is !, though you can choose another character by defining the separator
attribute on the table.


Although nested tables are not technically valid in DocBook 5.0, the DocBook tool­
chain processes them anyway.

The following example contains a nested table in the last cell. Notice the nested table has its own
format, independent of that of the outer table:

[cols="1,2a"]
|===
| Col 1 | Col 2

| Cell 1.1
| Cell 1.2

| Cell 2.1
| Cell 2.2

[cols="2,1"]
!===
! Col1 ! Col2

! C11
! C12

Assign a Role to a Table | 321

!===

|===

Result: A nested table

Col 1 Col 2

Cell 1.1 Cell 1.2

Cell 2.1 Cell 2.2

Col1 Col2

C11 C12

We recommend using nested tables sparingly. There’s usually a better way to present the informa­
tion.

CSV, TSV and DSV Data

Default table syntax

A table is delimited by a vertical bar and three equal signs (|===). It contains cells that are arranged
into rows according to the number of columns the table is assigned. The number of columns a table
contains can be specified implicitly using the number of cells in the table’s first row or by setting
the cols attribute. Each cell is specified by a vertical bar (|).

If you’re new to AsciiDoc tables, Build a Basic Table provides step by step directions for creating
your first table.

Style and layout options

Table content can be:

• styled and aligned by column or cell,

• aligned by row,

• duplicated across multiple rows, and

• marked up by any AsciiDoc syntax.

Table cells can span rows and columns.

You can adjust a table’s:

• width,

• orientation, and

• border style.

You can also specify each column’s width and designate header and footer rows.

322 | CSV, TSV and DSV Data

Supported data formats

The default table data format is prefix-separated values (PSV); that means the processor creates a
new cell each time it encounters a vertical bar (|). AsciiDoc also supports comma-separated values
(CSV), tab-separated values (TSV), and delimited data values (DSV).

Escape the cell separator

The parser scans for the cell separator to partition cells before it processes the cell text. So even if
you try to hide the cell separator using an inline passthrough, the parser will see it. If the cell con­
tain contains the cell separator, you must escape that character. There are three ways to escape it:

• Prefix the character with a leading backslash (i.e., \|), which will be removed from the output.

• Use the {vbar} attribute reference in place of | in content.

• Change the cell separator used by the table.

Unless you do one of these things, the cell separator will be interpreted as a cell boundary.

Consider the following example, which escapes the cell separator using a leading backslash:

[cols=2*]
|===
|The default separator in PSV tables is the \| character.
|The \| character is often referred to as a "`pipe`".
|===

This table will render as follows:

Result: Converted PSV table that contains pipe characters

The default separator in PSV tables is the | char­
acter.

The | character is often referred to as a “pipe”.

Notice that the pipe character appears without the leading backslash (i.e., unescaped) in the ren­
dered result.

An alternative is to use the {vbar} attribute reference as a substitute. This approach produces the
same result as the previous example.

[cols=2*]
|====
|The default separator in PSV tables is the {vbar} character.
|The {vbar} character is often referred to as a "`pipe`".
|====

Escaping each cell separator character that appears in the content of a cell can be tedious. There
are also times when you can’t or don’t want to modify the cell content (perhaps because it is being
included from another file). To address these cases, AsciiDoc allows you to override the cell separa­

CSV, TSV and DSV Data | 323

tor.

The cell separator is controlled using the separator attribute on the table block. You’ll want to select
any single character that is not found in the content. A good candidate is the broken bar, or ¦.

Here’s the previous example rewritten using a custom separator.

[cols=2*,separator=¦]
|===
¦The default separator in PSV tables is the | character.
¦The | character is often referred to as a "`pipe`".
|===

Notice that it’s no longer necessary to escape the pipe character in the content of the table cells. You
can safely use the original cell separator in the cell content and not worry about it being inter­
preted as the boundary of a cell.

Delimiter-separated values

Tables can also be populated from data formatted as delimiter-separated values (i.e., data tables). In
contrast with the PSV format, in which the delimiter is placed in front of each cell value, the delim­
iter in a delimiter-separated format (CSV, TSV, DSV) is placed between the cell values (called a sepa­
rator) and does not accept a cell formatting spec. Each line of data is assumed to represent a single
row, though you’ll learn that’s not a strict rule. How the table data gets interpreted is controlled by
the format and separator attributes on the table.

What the delimiter?

Aren’t comma-separated values a subset of delimiter-separated values? It really depends on
who you consult.

The term “delimiter-separated values” in this text refers to the family of data formats that use
a delimiter, including comma-separated values (CSV), tab-separated values (TSV) and delim­
ited data (DSV), all of which are supported in AsciiDoc tables. CSV is the data format used
most often.

“Comma-separated values” is really a misleading term since CSV can use delimiters other
than , as the field separator (which, in this context, separates cells). What we’re really talking
about is how the data is interpreted.

CSV and TSV both use a delimiter and an optional enclosing character, loosely based on RFC
4180. DSV (i.e., delimited data) only uses a delimiter, which can be escaped using a backslash;
an enclosing character is not recognized. These parsing rules are described in detail in Data
table formats.

Let’s consider an example of using comma-separated values (CSV) to populate an AsciiDoc table
with data. To instruct the processor to read the data as CSV, set the value of the format attribute on

324 | CSV, TSV and DSV Data

https://en.wikipedia.org/wiki/Delimiter-separated_values
https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc4180

the table to csv. When the format attribute is set to csv, the default data separator is a comma (,), as
seen in the table below.

[%header,format=csv]
|===
Artist,Track,Genre
Baauer,Harlem Shake,Hip Hop
The Lumineers,Ho Hey,Folk Rock
|===

Result: Rendered CSV table

Artist Track Genre

Baauer Harlem Shake Hip Hop

The Lumineers Ho Hey Folk Rock

This feature is particularly useful when you want to populate a table in your manuscript from data
stored in a separate file. You can do so using the include directive between the table delimiters, as
shown here:

[%header,format=csv]
|===
include::tracks.csv[]
|===

If your data is separated by tabs instead of commas, set the format to tsv (tab-separated values)
instead.

Now let’s consider an example of using delimited data (DSV) to populate an AsciiDoc table with
data. To instruct the processor to read the data as DSV, set the value of the format attribute on the ta­
ble to dsv. When the format attribute is set to dsv, the default data separator is a colon (:), as seen in
the table below.

[%header,format=dsv]
|===
Artist:Track:Genre
Robyn:Indestructible:Dance
The Piano Guys:Code Name Vivaldi:Classical
|===

Result: Rendered DSV table

Artist Track Genre

Robyn Indestructible Dance

The Piano Guys Code Name Vivaldi Classical

CSV, TSV and DSV Data | 325

Data table formats

The CSV and TSV data formats are parsed differently from the DSV data format. The following two
sections outline those differences.

CSV and TSV

Table data in either CSV or TSV format is parsed according to the following rules, loosely based on
RFC 4180:

• The default delimiter for CSV is a comma (,) while the default delimiter for TSV is a tab charac­
ter.

• Empty lines are skipped (unless enclosed in a quoted value).

• Whitespace surrounding each value is stripped.

• Values can be enclosed in double quotes (").

◦ A quoted value may contain zero or more separator or newline characters.

◦ A newline begins a new row unless the newline is enclosed in double quotes.

◦ A quoted value may include the double quote character if escaped using another double
quote ("").

◦ Newlines in quoted values are retained.

• If rows do not have the same number of cells (“ragged” tables), cells are shuffled to fully fill the
rows.

◦ This is different behavior than Excel, which pads short rows with empty cells.

◦ Extra cells at the end of the last row get dropped.

◦ As a rule of thumb, data for a single row should be on the same line.

DSV

Table data in DSV format is parsed according to the following rules:

• The default delimiter for DSV is a colon (:).

• Empty lines are skipped.

• Whitespace surrounding each value is stripped.

• The delimiter character can be included in the value if escaped using a single backslash (\:).

• If rows do not have the same number of cells (“ragged” tables), cells are shuffled to fully fill the
rows.

Custom delimiters

Each data format has a default separator associated with it (csv = comma, tsv = tab, dsv = colon), but
the separator can be changed to any character (or even a string of characters) by setting the separa­
tor attribute on the table.

Here’s an example of a DSV table that uses a custom separator character (i.e., delimiter):

326 | CSV, TSV and DSV Data

https://tools.ietf.org/html/rfc4180

Example 281. A DSV table with a custom separator

[format=dsv,separator=;]
|===
a;b;c
d;e;f
|===


To make a TSV table, you can set the format attribute to csv and the separator to \t.
Though the tsv format is preferred.

The separator is independent of the processing rules for the format. If you set format=dsv and sepa­
rator=,, the data will be processed using the DSV rules, even though the data looks like CSV.

Shorthand notation for data tables

AsciiDoc provides shorthand notation for specifying the data format of a table. The first position of
the table block delimiter (i.e., |===) can be replaced by a built-in delimiter to set the table format
(e.g., ,=== for CSV).

To make a CSV table, you can use ,=== as the table block delimiter:

,===
Artist,Track,Genre

Baauer,Harlem Shake,Hip Hop
,===

Result: Rendered CSV table using shorthand syntax

Artist Track Genre

Baauer Harlem Shake Hip Hop

To make a DSV table, you can use :=== as the table block delimiter:

:===
Artist:Track:Genre

Robyn:Indestructible:Dance
:===

Result: Rendered DSV table using shorthand syntax

Artist Track Genre

Robyn Indestructible Dance

When using either the CSV or DSV shorthand, you do not need to set the format attribute as it’s

CSV, TSV and DSV Data | 327

implied.

To make a TSV table, you can set the format attribute to tsv instead of having to set the format to csv
and the separator to \t. In this case, you can use either |=== or ,=== as the table block delimiter.
There is no special delimited block notation for a TSV table.

Formatting cells in a data table

The delimited formats do not provide a way to express formatting of individual table cells. Instead,
you can apply cell formatting to all cells in a given column using the cols spec on the table:

[format=csv,cols="1h,1a"]
|===
Sky,image::sky.jpg[]
Forest,image::forest.jpg[]
|===

Data tables do not support cells that span multiple rows or columns, since that information can
only be expressed at the cell level. You are advised to use the PSV format if you need that function­
ality.

Table Reference

Attribute Description Value Description Notes

caption defines the title label
on a single table

user-
defined

cols comma-separated list of
column specifiers

specifiers Specifies the number of
columns and the distri­
bution ratio and default
formatting for each col­
umn. See Add Columns
to a Table for details

328 | Table Reference

Attribute Description Value Description Notes

format data format of the ta­
ble’s contents

psv cells are delimited by
separator (default |)
(aka prefix-separated
values)

dsv cells are delimited by a
colon (:) (aka delimiter-
separated values)

csv cells are delimited by a
comma (,) (aka comma-
separated values)

tsv cells are delimited by a
tab character (aka tab-
separated values)

separator character used to sepa­
rate cells

| default for top-level
tables

! default for nested
tables

user-
defined

any single character or
\t for tab (e.g., ¦ or %).
Ideally a character not
found in the cell content.

frame draws a border around
the table

all border on all sides
(default)

ends border on top and bot­
tom ends

none no borders

sides border on left and right
sides

grid draws boundary lines
between rows and
columns

all draws boundary lines
around each cell
(default)

cols draws boundary lines
between columns

rows draws boundary lines
between rows

none no boundary lines

Table Reference | 329

Attribute Description Value Description Notes

stripes controls row shading
(via background color)

none no rows are shaded
(default)

even even rows are shaded

odd odd rows are shaded

hover row under the mouse
cursor is shaded (HTML
only)

all all rows are shaded

align horizontally aligns a ta­
ble with restricted
width

left aligns to left side of
page (default)

Not recognized by Asci­
idoctor. To align the ta­
ble, use an alignment
role (e.g., [role=center]
or [.center]). The align­
ment roles work for
both HTML and PDF
output. Alignment roles
and the float attributes
are mutually exclusive.

right aligns to right side of
page

center horizontally aligns to
center of page

float floats the table to the
specified side of the
page

left floats the table to the
left side of the page
(default)

Applies to HTML output
only. Must be used in
conjunction with the ta­
ble’s width attribute to
take effect. The float
and align attributes are
mutually exclusive.

right floats the table to the
right side of the page

halign horizontally aligns all
of the cell contents in a
table

left aligns the contents of
the cells to the left
(default)

Not recognized by Asci­
idoctor. Define instead
using column or cell
specifiers (e.g., 3*>),
which take precedence
over this value.

right aligns the contents of
the cells to the right

center aligns the contents to
the cell centers

valign vertically aligns all of
the cell contents in a ta­
ble

top aligns the cell contents
to the top of the cell
(default)

Not recognized by Asci­
idoctor. Define instead
using column or cell
specifiers (e.g., 3*.>),
which take precedence
over this value.

bottom aligns the cell contents
to the bottom of the cell

middle aligns the cell contents
to the middle of the cell

330 | Table Reference

Attribute Description Value Description Notes

orienta­
tion

rotates the table landscape rotated 90 degrees
counterclockwise

Equivalent to setting
the rotate option,
which is preferred.
DocBook only.

options comma separated list of
option names

header promotes first row to
the table header

header and footer rows
are omitted by default

footer promotes last row to
the table footer

breakable allows the table to split
across a page (default)

Mutually exclusive.
DocBook only (specifi­
cally for generating
PDF output).

unbreak­
able

prevents the table from
being split across a
page

autowidth disables explicit col­
umn widths (ignores
distribution ratios in
cols attribute)

rotate Prints the table in land­
scape

Equivalent to setting
the orientation to land­
scape. DocBook only.

role comma-separated list of
role names

left floats the table to the
left margin

The role is the pre­
ferred way to specify
the alignment of a table
with restricted width.
May be specified using
role shorthand (e.g.,
[.center]).

right floats the table to the
right

center aligns the table to cen­
ter

stretch stretches an autowidth
table to the width of the
page

width the table width relative
to the available page
width

user
defined
value

a percentage value
between 0% and 100%

Table Reference | 331

Equations and Formulas (STEM)
If you need to include Science, Technology, Engineering and Math (STEM) expressions in your docu­
ment, the AsciiDoc language supports embedding math-mode macros from LaTeX and/or AsciiMath
notation as block or inline elements. These elements act as passthroughs to preserve the expres­
sions as entered. The expressions are then passed on to the converter to be processed and rendered
for display using a STEM provider (e.g., MathJax).

Activating STEM support
To activate equation and formula support, set the stem attribute in the document’s header (or by
passing the attribute to the command line or API).

Example 282. Setting the stem attribute

= My Diabolical Mathematical Opus
Jamie Moriarty
:stem: ①

① The default notation value, asciimath, is assigned implicitly.

By default, AsciiDoc’s stem integration assumes all equations are AsciiMath if not specified explic­
itly. The HTML converter supports STEM content written in AsciiMath and TeX and LaTeX math
notation. The DocBook converter only processes AsciiMath notation, leaving LaTeX to be processed
by a separate tool in the DocBook toolchain.

If you want to use the LaTeX notation by default, assign latexmath to the stem attribute.

Example 283. Assigning an alternative notation to the stem attribute

= My Diabolical Mathematical Opus
Jamie Moriarty
:stem: latexmath



You can use both notations in the same document. The value of the stem attribute
merely sets the default notation. To set the notation explicitly for a given block or
inline span, just use asciimath or latexmath in place of stem as explained in Mixing
STEM notations.

Stem content can be displayed inline with other content or as discrete blocks. No substitutions are
applied to the content within a stem macro or block.

Inline STEM content
The best way to mark up an inline formula is to use the stem macro. The text between the square
brackets of the inline stem macro acts as an implicit passthrough.

332 | Activating STEM support

https://docs.mathjax.org/en/latest/input/tex/index.html
https://docs.mathjax.org/en/latest/input/asciimath.html
https://docs.mathjax.org/en/latest/input/asciimath.html
https://docs.mathjax.org/en/latest/input/tex/index.html

Example 284. Inline stem macro syntax

stem:[sqrt(4) = 2] ① ②

Water (stem:[H_2O]) is a critical component.

① The inline stem macro contains only one colon (:).

② Place the expression within the square brackets ([]) of the macro.

The result of Example 284 is displayed below.

sqrt(4) = 2

Water (H_2O) is a critical component.

If the inline stem equation contains a right square bracket, you must escape this character using a
backslash.

Example 285. Inline stem macro with a right square bracket

A matrix can be written as stem:[[[a,b\],[c,d\]\]((n),(k))].

The result of Example 285 is displayed below.

A matrix can be written as [[a,b],[c,d]]((n),(k)).

Since the inline stem macro is an implicit passthrough, the closing square bracket it the only char­
acter you have to escape. You don’t have to worry about escaping other AsciiDoc syntax, such as
attribute references. All such syntax is passed through to the STEM processor as is.

Block STEM content
Block formulas are marked up by assigning the stem style to a delimited passthrough block.

Example 286. Delimited stem block syntax

[stem] ①
++++ ②
sqrt(4) = 2
++++

① Assign the stem style to the passthrough block.

② A passthrough block is delimited by a line of four consecutive plus signs (++++).

The result Example 286 is rendered beautifully in the browser thanks to MathJax!

Block STEM content | 333

sqrt(4) = 2


You don’t need to add special delimiters around the expression as the MathJax doc­
umentation suggests. The AsciiDoc processor handles that for you automatically!

Newlines in AsciiMath blocks

Newlines in an AsciiMath block are only preserved in certain circumstances. The following exam­
ples illustrate how newlines are handled.

▼ Single newline not preserved

x
y

▼ Single newline preserved if escaped

x\
y

▼ Sequential newlines preserved if escaped

x\
\
y

▼ Paragraph break preserved

x

y

▼ Sequential newlines between paragraph break preserved

x

y

The first preserved newline splits the expression into two. Subsequent newlines get translated into
a
 element.

334 | Block STEM content

https://meta.math.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
https://meta.math.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference

Newlines in LaTeX blocks

Newlines in a LaTeX block are only preserved in certain circumstances. The following examples
illustrate how newlines are handled.

▼ Single newline not preserved

x
y

▼ Single newline preserved if escaped

x\\
y

▼ Sequential newlines preserved if escaped and prefixed by null character

x\\
~\\
y

▼ Paragraph break not preserved

x

y

▼ Paragraph break preserved if separated by newline spacer

x
\\[1em]
y

The first preserved newline splits the expression into two. Subsequent newlines get translated into
a
 element.

Mixing STEM notations
You can use multiple notations for STEM content within the same document by using the notation’s
name instead of the keyword stem.

For example, if you want to write an inline equation using the LaTeX notation, name the macro
latexmath.

Example 287. Inline latexmath macro syntax

latexmath:[C = \alpha + \beta Y^{\gamma} + \epsilon]

Mixing STEM notations | 335

The result of Example 287 is displayed below.

C = \alpha + \beta Y^{\gamma} + \epsilon

The name that maps to the notation you want to use can also be applied to block STEM content.

Example 288. Using both asciimath and latexmath notations in a single document

= My Diabolical Mathematical Opus
Jamie Moriarty
:stem: latexmath

.An e-xciting limit with LaTeX!
[stem]
++++
\lim_{n \to \infty}\frac{n}{\sqrt[n]{n!}} = {\large e}
++++

.A basic square root with AsciiMath
[asciimath]
++++
sqrt(4) = 2
++++

Here’s how the body of this example will be shown:

An e-xciting limit with LaTeX!

\lim_{n \to \infty}\frac{n}{\sqrt[n]{n!}} = {\large e}

A basic square root with AsciiMath

sqrt(4) = 2

Equation numbering
When writing expresions in LaTeX, you can configure the STEM processor to add numbers to block
equations. To do so, set the eqnums attribute on the document to empty (or AMS). Let’s look at an
example.

= Document Title
:stem: latexmath
:eqnums:

[stem]

336 | Equation numbering

++++
\begin{equation}
x = y^2
\end{equation}
++++

The automatic numbering is only applied when the expression is contained within an {equation}
container (in fact, to all such containers in a stem block).

If you want all expressions to be numbered, even those not designated as an equation, set the value
of the eqnums attribute to all. Let’s look at an example.

= Document Title
:stem: latexmath
:eqnums: all

[stem]
++++
x = y^2
++++

In this case, the {equation} container is not required.

Reference equations
When writing expresions in LaTeX, you can reference an equation in a stem block using an inline
stem macro. First, you need to add a label (aka ID) to the (ideally numbered) equation in a stem
block using \label .

= Document Title
:stem: latexmath
:eqnums:

[stem]
++++
\begin{equation}
\label{hypotenuse}
c = \sqrt{a^2 + b^2}
\end{equation}
++++

Next, we reference that equation using \eqref.

We can calculate the hypotenuse using stem:[\eqref{hypotenuse}].

You can also use \eqref within any LaTeX stem block.

Reference equations | 337

Open Blocks
The most versatile block of all is the open block. It allows you to apply block attributes to a chunk of
text without giving it any other semantics. In other words, it provides a generic structural container
for enclosing content. The only notable limitation is that an open block cannot be nested inside of
another open block.

Open block syntax
Example 289. Open block syntax

--
An open block can be an anonymous container,
or it can masquerade as any other block.
--

The result of Example 289 is displayed below.

An open block can be an anonymous container, or it can masquerade as any other block.

An open block can act as any other paragraph or delimited block, with the exception of pass and ta­
ble. For instance, in Example 290 an open block is acting as a sidebar.

Example 290. Open block masquerading as a sidebar

[sidebar]
.Related information
--
This is aside text.

It is used to present information related to the main content.
--

The result of Example 290 is displayed below.

Related information

This is aside text.

It is used to present information related to the main content.

Example 291 is an open block acting as a source block.

Example 291. Open block masquerading as a source block

[source]
--

338 | Open block syntax

puts "I'm a source block!"
--

The result of Example 291 is displayed below.

puts "I'm a source block!"

Open block syntax | 339

Collapsible Blocks
You can designate block content to be revealed or hidden on interaction using the collapsible option
and its companion, the open option. When the AsciiDoc source is converted to HTML, this block gets
mapped to a disclosure summary element (i.e., a summary/details pair). If the output format does
not support this interaction, it may be rendered as an unstyled block (akin to an open block).

Collapsible block syntax
You make block content collapsible by specifying the collapsible option on the example structural
container. This option changes the block from an example block to a collapsible block.

Example 292. Collapsible block syntax

[%collapsible]
====
This content is only revealed when the user clicks the block title.
====

In the output, the content of this block is hidden until the reader clicks the default title, “Details”.
The result of Example 292 is displayed below.

▼ Details

This content is only revealed when the user clicks the block title.

Like other blocks, the collapsible block recognizes the id and role attributes.

Collapsible paragraph syntax
If the content of the block is only a single paragraph, you can use the example paragraph style
instead of the example structural container to make a collapsible paragraph.

Example 293. Collapsible paragraph syntax

[example%collapsible]
This content is only revealed when the user clicks the block title.

In the output, the content of this block is hidden until the reader clicks the default title, “Details”.
The result of Example 293 is displayed below.

▼ Details

This content is only revealed when the user clicks the block title.

Customize the toggle text
If you want to customize the text that toggles the display of the collapsible content, specify a title on
the block or paragraph.

340 | Collapsible block syntax

Example 294. Collapsible block with custom title

.Click to reveal the answer
[%collapsible]
====
This is the answer.
====

The result of Example 294 is displayed below.

▼ Click to reveal the answer

This is the answer.

Notice that even though this block has a title, it’s not numbered and does not have a caption prefix.
That’s because it’s not an example block and thus does not get a numbered caption prefix like an
example block would.

Default to open
If you want the collapsible block to be open by default, specify the open option as well.

Example 295. Collapsible block that defaults to open

.Too much detail? Click here.
[%collapsible%open]
====
This content is revealed by default.

If it's taking up too much space, the reader can hide it.
====

The result of Example 295 is displayed below.

▼ Too much detail? Click here.

This content is revealed by default.

If it’s taking up too much space, the reader can hide it.

Use as an enclosure
Much like the open block, the collapsible block is an enclosure. If you want to make other types of
blocks collapsible, such as an listing block, you can nest the block inside the collapsible block.

Example 296. Collapsible block that encloses a literal block

.Show stacktrace
[%collapsible]
====

Default to open | 341

....
Error: Content repository not found (url: https://git.example.org/repo.git)
 at transformGitCloneError
 at git.clone.then.then.catch
Caused by: HttpError: HTTP Error: 401 HTTP Basic: Access Denied
 at GitCredentialManagerStore.rejected
 at fill.then
....
====

The result of Example 296 is displayed below.

▼ Show stacktrace

Error: Content repository not found (url: https://git.example.org/repo.git)
 at transformGitCloneError
 at git.clone.then.then.catch
Caused by: HttpError: HTTP Error: 401 HTTP Basic: Access Denied
 at GitCredentialManagerStore.rejected
 at fill.then

Since the toggle text acts as the block title, you may decide to not put a title on the nested block, as
in this example.

342 | Use as an enclosure

Comments
Like programming languages, AsciiDoc provides a way to add commentary to your document that’s
not carried over into the published document. This artifact is collectively known as a comment.
Putting text in a comment is often referred to as “commenting it out”.

A comment is often used to insert a writer-facing notation or to hide draft content that’s not ready
for publishing. In general, you can use comments anytime you want to hide lines from the proces­
sor. Comments can also be useful as a processor hint to keep adjacent blocks of content separate.

The AsciiDoc processor will ignore comments during parsing and, thus, will not include them in the
parsed document. It will, however, account for the lines when mapping line numbers back to the
source document.

AsciiDoc supports two styles of comments, line and block. A line comment is for making comments
line-by-line (i.e., comment line). A block comment is for enclosing an arbitrary range of lines as a
comment (i.e., comment block).

Comment lines
A comment line is any line outside of a verbatim block that begins with a double forward slash (//)
that’s not immediately followed by a third forward slash. Following this prefix, the line may contain
an arbitrary number of characters. It’s customary to insert a single space between the prefix and
the comment text (e.g., // line comment).

Example 297. Line comment syntax

// A single-line comment.

When the processor encounters a line comment, it ignores the line and continues processing as
though the line is not there. Line comments are processed as lines are read, so they can be used
where paragraph text is not permitted, such as between attribute entries in the document header.

Line comments can be used strategically to separate blocks that otherwise have affinity, such as two
adjacent lists.

Example 298. Line comment separating two lists

* first list

//

* second list

In this case, the single line comment effectively acts as an empty paragraph that’s dropped from the
parsed document. But before then, it will have served its purpose as a block boundary.

Comment lines | 343

Comment blocks
A comment block is a specialized delimited block. It consists of an arbitrary number of lines
bounded on either side by //// delimiter lines.

A comment block can be used anywhere a delimited block is normal accepted. The main difference
is that once the block is read, it’s dropped from the parsed document (effectively ignored). Addition­
ally, no AsciiDoc syntax within the delimited lines is interpreted, not even preprocessor directives.

Example 299. Block comment syntax

////
A comment block.

Notice it's a delimited block.
////

A comment block can also be written as an open block with the comment style:

Example 300. Alternate block comment syntax

[comment]
--
A comment block.

Notice it's a delimited block.
--

A comment block that can consists of a single paragraph can be written as a paragraph with the
comment style:

Example 301. Comment paragraph syntax

[comment]
A paragraph comment.
Like all paragraphs, the lines must be contiguous.

Not a comment.

If comment blocks are used in a list item, they must be attached to the list item just like any other
block.

Example 302. Block comment attached to list item

* first item
+
////
A comment block in a list.

344 | Comment blocks

Notice it's attached to the preceding list item.
////

* second item

Within a table, a comment block can only be used in an AsciiDoc table cell.

Example 303. Block comment within a table

|===
a|
cell text

////
A comment block in a table.

Notice the cell has the "a" (AsciiDoc) style.
////
|===

Comment blocks can be very effective for commenting out sections of the document that are not
ready for publishing or that provide background material or an outline for the text being drafted.

Comment blocks | 345

Automatic Table of Contents
A table of contents (TOC) is an index of section titles in an AsciiDoc document. When the TOC is
enabled, the AsciiDoc processor automatically generates the TOC from the document’s structure
and inserts it into the output document. The number of levels (i.e., depth) of the TOC is config­
urable.

Activate the TOC
To enable the autogenerated TOC, set the toc document attribute. The toc attribute is activated with
an attribute entry in the document header.

Example 304. Enable TOC with the toc attribute

= The Intrepid Chronicles
Kismet Lee; B. Steppenwolf; Pax Draeke
:toc: ①

== Certain Peril

Daylight trickles across the cobblestones...

=== A Recipe for Potion

We have to harvest the leaves by the light of the teal moons...

==== Searching for Ginseng

Crawling through the twisted understory...

== Dawn on the Plateau

Hanging from...

① Set the toc attribute in the header using an attribute entry. When the value of toc is empty, the
processor will use the attribute’s default value.

By default, the TOC is rendered directly below the document header, is titled Table of Contents, and
contains section 1 and section 2 level titles only. The result of Example 304 is displayed below.

346 | Activate the TOC

You can customize the title of the TOC, the depth of the section levels, and the position of the TOC in
the document. However, not all of the attributes are supported by all converters. See TOC Attributes
Reference for which attributes are available to each converter.

Activate the TOC from the CLI
The toc attribute can also be specified via the command line (-a toc).

TOC enabled via the CLI

$ asciidoctor -a toc my-document.adoc

Customize the TOC Title
You can change the title of the table of contents with the toc-title attribute.

Activate the TOC from the CLI | 347

Set toc-title

To generate a TOC with a custom title, set the toc-title attribute in the header and assign it your
preferred title.

Example 305. Define a custom TOC title

= The Intrepid Chronicles
Kismet Lee; B. Steppenwolf; Pax Draeke
:toc: ①
:toc-title: Table of Adventures ②

== Certain Peril

Daylight trickles across the cobblestones...

① The toc attribute must be set in order to use toc-title.

② The toc-title is set and assigned the value Table of Adventures in the document’s header.

The result of Example 305 is displayed below.

Adjust the TOC Depth
You can adjust the depth of section levels displayed in the table of contents (TOC) using the
toclevels attribute.

Set toclevels

The toclevels document attribute controls the depth of the TOC. Accepted values are the integers 0
through 5. These values represent the section levels. (A section level is one less than the number of
= signs the precede the title in the source.)

348 | Adjust the TOC Depth

If the toclevels attribute is not specified, it defaults to 2. That means the TOC displays level 1 (==)
and level 2 (===) section titles and, in the case of a multipart book, level 0 (=) section titles (parts).

Let’s use the toclevels attribute to increase the depth of the TOC from 2 to 4.

Example 306. Define toclevels value

= The Intrepid Chronicles
Kismet Lee; B. Steppenwolf; Pax Draeke
:toc: ①
:toclevels: 4 ②

== Certain Peril

Daylight trickles across the cobblestones...

=== A Recipe for Potion

We have to harvest the leaves by the light of the teal moons...

==== Searching for Ginseng

Crawling through the twisted understory...

== Dawn on the Plateau

Hanging from...

① The toc attribute must be set in order to use toclevels.

② toclevels is set and assigned the value 4 in the document header. The TOC will list the titles of
any sections up to level 4 (i.e., ====), when the document is rendered.

The result of Example 306 is displayed below.

Adjust the TOC Depth | 349

In a multipart book, if you only want to see part titles (as well as any special sections at level 0) in
the TOC, set toclevels to 0. If the document does not have parts, and you set toclevels to 0, the
value is coerced to 1.

Position the TOC
By default, the table of contents is inserted directly below the document title, author, and revision
lines when the toc attribute is set and its value is left empty or set to auto. This location can be
changed by assigning one of the built-in positional values to the toc attribute. The values are:

• left

• right

• preamble

• macro

• auto (default)

350 | Position the TOC

Display the TOC as a side column

When converting to HTML, you can position the TOC to the left or right of the main content column
by assigning the value left or right to the toc attribute, respectively. The sidebar column contain­
ing the TOC is both fixed and scrollable.

Example 307. Assign the left value to toc

= The Intrepid Chronicles
Kismet Lee; B. Steppenwolf; Pax Draeke
:toc: left

== Certain Peril

Daylight trickles across the cobblestones...

=== A Recipe for Potion

We have to harvest the leaves by the light of the teal moons...

==== Searching for Ginseng

Crawling through the twisted understory...

== Dawn on the Plateau

Hanging from...

The result of Example 307 is displayed below.

Position the TOC | 351

This positioning is achieved using CSS and depends on support from the stylesheet.



The side positions (left and right) have a width requirement. These positions are
only honored if there’s sufficient room on the screen to fit the sidebar column (typ­
ically at least 768px). If sufficient room available is not available (i.e., the screen
width falls below the breakpoint), the TOC automatically shifts back to the cen­
ter, appearing directly below the document title.


The TOC is always placed in the center in an embeddable HTML document, regard­
less of the value of the toc attribute.

Display the TOC beneath the preamble

When toc is assigned the built-in value preamble, the TOC is placed immediately below the pream­
ble.

Example 308. Assign the preamble value to toc

= The Intrepid Chronicles
Kismet Lee; B. Steppenwolf; Pax Draeke
:toc: preamble

This adventure begins on a frigid morning.
We've run out of coffee beans, but leaving our office means venturing into certain
peril.

== Certain Peril

Daylight trickles across the cobblestones...

== Dawn on the Plateau

Hanging from...

The result of Example 308 is displayed below.

352 | Position the TOC


When using the preamble value, the TOC will not appear if your document does not
have a preamble. To fix this problem, set the toc attribute to an empty value (i.e.,
leave the value empty) or assign it the value auto.

Use the TOC macro to position the TOC

To place the TOC in specific location in the document, assign the macro value to the toc attribute.
Then, enter the table of contents block macro (i.e., TOC macro) on the line in your document where
you want the TOC to appear. The TOC macro should only be used once in a document.

If the toc document attribute isn’t assigned the value macro, any TOC macro in the document will be
ignored.

Example 309. Assign the macro value to toc

= The Intrepid Chronicles
Kismet Lee; B. Steppenwolf; Pax Draeke
:toc: macro ①

== Certain Peril

toc::[] ②

Daylight trickles across the cobblestones...

== Dawn on the Plateau

Hanging from...

Position the TOC | 353

① The toc attribute must be set to macro to enable the use of the TOC macro.

② In this example, the TOC macro is placed below the first section’s title, indicating that this is the
location where the TOC will be displayed once the document is rendered.

The result of Example 309 is displayed below.

Embeddable HTML, editor and previewer limitations

When AsciiDoc is converted to embeddable HTML (i.e., the header_footer option is false), there are
only three valid values for the toc attribute:

• auto

• preamble

• macro

All of the following environments convert AsciiDoc to embeddable HTML:

• the file viewer on GitHub and GitLab

• the AsciiDoc preview in an editor like Atom, Brackets or AsciidocFX

• the Asciidoctor browser extensions


The side column placement (left or right) isn’t available in this mode. That’s
because the embeddable HTML doesn’t have the outer framing (or the CSS) neces­
sary to support a side column TOC.

354 | Position the TOC

TOC Attributes Reference

Attri
bute

Values Example
Syntax

Notes Backends

toc auto, left, right,
macro, preamble

:toc: left Not set by default. Defaults to auto if value is
unspecified.

html

auto, macro, pre­
amble

:toc: macro Not set by default. Defaults to auto if value is
unspecified.

html
(embedda­
ble)

auto :toc: Not set by default. When the title page is
enabled in PDF output, the table of contents is
placed directly after the title page.

pdf

auto :toc: Not set by default. The placement and styling of
the table of contents is determined by the Doc­
Book toolchain configuration.

docbook

tocle
vels

0–5 :toclevels:
4

Default value is 2. html, pdf

toc-
title

user-defined :toc-title:
Contents

Default value is Table of Contents. html, pdf

toc-
class

valid CSS class
name

:toc-class:
floating-toc

Default value is toc. html

TOC Attributes Reference | 355

Docinfo Files
Docinfo is a feature of AsciiDoc that allows you to insert custom content into the head, header, or
footer of the output document. This custom content is read from files known as docinfo files by the
converter. Docinfo files are intended as convenient way to supplement the output produced by a
converter. Examples include injecting auxiliary metadata, stylesheets, and scripting logic not
already provided by the converter.

The docinfo feature does not apply to all backends. While it works when converting to output for­
mats such as HTML and DocBook, it does not work when converting to PDF using Asciidoctor PDF.

The docinfo feature must be explicitly enabled using the docinfo attribute (see Enabling docinfo).
Which docinfo files are consumed depends on the value of the docinfo attribute as well as the back­
end.

Head docinfo files
The content of head docinfo files gets injected into the top of the document. For HTML, the content
is append to the <head> element. For DocBook, the content is appended to the root <info> element.

The docinfo file for HTML output may contain valid elements to populate the HTML <head> element,
including:

• <base>

• <link>

• <meta>

• <noscript>

• <script>

• <style>


Use of the <title> element is not recommended as it’s already emitted by the con­
verter.

You do not need to include the enclosing <head> element as it’s assumed to be the envelope.

Here’s an example:

Example 310. A head docinfo file for HTML output

<meta name="keywords" content="open source, documentation">
<meta name="description" content="The dangerous and thrilling adventures of an open
source documentation team.">
<link rel="stylesheet" href="basejump.css">
<script src="map.js"></script>

Docinfo files for HTML output must be saved with the .html file extension. See Naming docinfo files

356 | Head docinfo files

for more details.

The docinfo file for DocBook 5.0 output may include any of the <info> element’s children, such as:

• <address>

• <copyright>

• <edition>

• <keywordset>

• <publisher>

• <subtitle>

• <revhistory>

The following example shows some of the content a docinfo file for DocBook might contain.

Example 311. A docinfo file for DocBook 5.0 output

<author>
 <personname>
 <firstname>Karma</firstname>
 <surname>Chameleon</surname>
 </personname>
 <affiliation>
 <jobtitle>Word SWAT Team Leader</jobtitle>
 </affiliation>
</author>

<keywordset>
 <keyword>open source</keyword>
 <keyword>documentation</keyword>
 <keyword>adventure</keyword>
</keywordset>

<printhistory>
 <para>April, 2021. Twenty-sixth printing.</para>
</printhistory>

Docinfo files for DocBook output must be saved with the .xml file extension. See Naming docinfo
files for more details.

You can find a real-world example of a docinfo file for DocBook in the source of the Clojure Cook­
book.

Header docinfo files
Header docinfo files are differentiated from head docinfo files by the addition of -header to the file
name. In the HTML output, the header content is inserted immediately before the header div (i.e.,
<div id="header">). In the DocBook output, the header content is inserted immediately after the

Header docinfo files | 357

https://tdg.docbook.org/tdg/5.0/info.html
https://github.com/clojure-cookbook/clojure-cookbook/blob/master/book-docinfo.xml
https://github.com/clojure-cookbook/clojure-cookbook/blob/master/book-docinfo.xml

opening tag (e.g., <article> or <book>).


One possible use of the header docinfo file is to completely replace the default
header in the standard stylesheet. Just set the attribute noheader, then apply a cus­
tom header docinfo file.

Footer docinfo files
Footer docinfo files are differentiated from head docinfo files by the addition of -footer to the file
name. In the HTML output, the footer content is inserted immediately after the footer div (i.e., <div
id="footer">). In the DocBook output, the footer content is inserted immediately before the ending
tag (e.g., </article> or </book>).


One possible use of the footer docinfo file is to completely replace the default
footer in the standard stylesheet. Just set the attribute nofooter, then apply a cus­
tom footer docinfo file.

Naming docinfo files
The file that gets selected to provide the docinfo depends on which converter is in use (html, doc­
book, etc) and whether the docinfo scope is configured for a specific document (“private”) or for all
documents in the same directory (“shared”). The file extension of the docinfo file must match the
file extension of the output file (as specified by the outfilesuffix attribute, a value which always
begins with a period (.)).

Docinfo file naming

Mode Location Behavior Docinfo file name

Private Head Adds content to <head>/<info>
for <docname>.adoc files.

<docname>-docinfo<outfilesuf­
fix>

Header Adds content to start of docu­
ment for <docname>.adoc files.

<docname>-docinfo-header<out­
filesuffix>

Footer Adds content to end of docu­
ment for <docname>.adoc files.

<docname>-docinfo-footer<out­
filesuffix>

Shared Head Adds content to <head>/<info>
for any document in same
directory.

docinfo<outfilesuffix>

Header Adds content to start of docu­
ment for any document in same
directory.

docinfo-header<outfilesuffix>

Footer Adds content to end of docu­
ment for any document in same
directory.

docinfo-footer<outfilesuffix>

358 | Footer docinfo files

Enabling docinfo
To specify which file(s) you want to apply, set the docinfo attribute to any combination of these val­
ues:

• private-head

• private-header

• private-footer

• private (alias for private-head,private-header,private-footer)

• shared-head

• shared-header

• shared-footer

• shared (alias for shared-head,shared-header,shared-footer)

Setting docinfo with no value is equivalent to setting the value to private.

For example:

:docinfo: shared,private-footer

This docinfo configuration will apply the shared docinfo head, header and footer files, if they exist,
as well as the private footer file, if it exists.

Let’s apply this to an example:

You have two AsciiDoc documents, adventure.adoc and insurance.adoc, saved in the same folder.
You want to add the same content to the head of both documents when they’re converted to HTML.

1. Create a docinfo file containing <head> elements.

2. Save it as docinfo.html.

3. Set the docinfo attribute in adventure.adoc and insurance.adoc to shared.

You also want to include some additional content, but only to the head of adventure.adoc.

1. Create another docinfo file containing <head> elements.

2. Save it as adventure-docinfo.html.

3. Set the docinfo attribute in adventure.adoc to shared,private-head

If other AsciiDoc files are added to the same folder, and docinfo is set to shared in those files, only
the docinfo.html file will be added when converting those files.

Locating docinfo files
By default, docinfo files are searched for in the same directory as the document file (which can be

Enabling docinfo | 359

overridden by setting the :base_dir API option / --base-dir CLI option). If you want to load them
from another location, set the docinfodir attribute to the directory where the files are located. If the
value of the docinfodir attribute is a relative path, that value is appended to the document direc­
tory. If the value is an absolute path, that value is used as is.

:docinfodir: common/meta

Note that if you use this attribute, only the specified folder will be searched; docinfo files in the doc­
ument directory will no longer be found.

Attribute substitution in docinfo files
Docinfo files may include attribute references. Which substitutions get applied is controlled by the
docinfosubs attribute, which takes a comma-separated list of substitution names. If this attribute is
not set, it has an implied default value of attributes (i.e., attribute references are resolved).

For example, if you created the following docinfo file:

Example 312. Docinfo file (docinfo.xml) containing a revnumber attribute reference

<edition>{revnumber}</edition>

And this source document:

Example 313. Source document including a revision number

= Document Title
Author Name
v1.0, 2020-12-30
:doctype: book
:backend: docbook
:docinfo: shared

Then the converted DocBook output would be:

Example 314. Converted DocBook containing the docinfo

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://docbook.org/ns/docbook" xmlns:xl="http://www.w3.org/1999/xlink"
version="5.0" xml:lang="en">
<info>
<title>Document Title</title>
<date>2020-12-30</date>
<author>
<personname>
<firstname>Author</firstname>
<surname>Name</surname>
</personname>

360 | Attribute substitution in docinfo files

</author>
<authorinitials>AN</authorinitials>
<revhistory>
<revision>
<revnumber>1.0</revnumber>
<date>2020-12-30</date>
<authorinitials>AN</authorinitials>
</revision>
</revhistory>
<edition>1.0</edition> ①
</info>
</book>

① The revnumber attribute reference in docinfo.xml was replaced by the source document’s revi­
sion number in the converted output.

Another example is if you want to define the license link tag in the HTML head.

Example 315. Docinfo file (docinfo.html) containing a license meta tag

<link rel="license" href="{license-url}" title="{license-title}">

Now define these attributes in your AsciiDoc source:

Example 316. Source document that defines license attributes

= Document Title
:license-url: https://mit-license.org
:license-title: MIT
:docinfo: shared

Then the <head> tag in the converted HTML would include:

Example 317. Rendered license link tag in HTML output

<link rel="license" href="https://mit-license.org" title="MIT">

Attribute substitution in docinfo files | 361

Includes
You can include content from another file into the current AsciiDoc document using the include
directive. The included content can be AsciiDoc or it can be any other text format. Where that con­
tent is included in the document determines how it will be processed.

What is an include directive?
An include directive imports content from a separate file or URL into the content of the current
document. When the current document is processed, the include directive syntax is replaced by the
contents of the include file. Think of the include directive like a file expander. The include directive
is a preprocessor directive, which means it has no awareness of the surrounding context.

When is an include directive useful?
The include directive is useful when you want to:

• Partition a large document into smaller files for better organization and to make restructuring
simpler.[1]

• Insert source code from the external files where the code is maintained.

• Populate tables with output, such as CSV data, from other programs.

• Create document variants by combining the include directive with conditional preprocessor
directives.

• Reuse content snippets and boilerplate content, such as term definitions, disclaimers, etc., multi­
ple times within the same document.

• Define a common set of attributes across multiple documents (typically included into the docu­
ment header).

Include directive syntax
An include directive must be placed on a line by itself with the following syntax:

include::target[leveloffset=offset,lines=ranges,tag(s)=name(s),indent=depth,encoding=e
ncoding,opts=optional]

The target is required. The target may be an absolute path, a path relative to the current document,
or a URL. Since the include directive is a line-oriented expression, the target may contain space
characters. However, the target must not start with a space character (since that would turn it into
a description list term). An absolute or relative path outside the directory of the outermost docu­
ment will only be honored if the safe mode is unsafe. A URL target will only be resolved if the secu­
rity settings on the processor allows it (e.g., allow-uri-read). See Include Content by URI.

The leveloffset, lines, tag(s), indent, encoding, and opts attributes are optional, thus reducing the
simplest case to the following:

362 | What is an include directive?

include::partial.adoc[]

Specifying the encoding is essential if the include file is not encoded in UTF-8. The value of this
attribute must be an encoding recognized by Ruby (e.g., utf-8, iso-8859-1, windows-1252, etc), case
insenstive. If the include file is already encoded in UTF-8 (or contains a BOM), this attribute is
unnecessary.

When using consecutive include directives, you should always separate them by an empty line
unless your intention is to adjoin the content in the include files so it becomes contiguous.

For example, if you’re using the include directive to include individual chapters, the include direc­
tives should be offset from each other by an empty line. This strategy avoids relying on empty lines
imported from the include file to keep the chapters separated. That separation should be encoded
in the parent document instead.

include::chapter01.adoc[]

include::chapter02.adoc[]

include::chapter03.adoc[]

On the other hand, if you’re using the include directive to lay down contiguous lines, such as com­
mon document attribute entries, then you would put the include directives on adjacent lines to
avoid inserting empty lines.

= Document Title
Author Name
include::attributes-settings.adoc[]
include::attributes-urls.adoc[]
:url-example: https://example.org

Document body.

In either case, don’t rely on the empty lines at the boundaries of the include file. And mind where
empty lines are used in that include file.

Include processing
Although the include directive looks like a block macro, it’s not a macro and therefore isn’t
processed like one. It’s a preprocessor directive; it’s important to understand the distinction.

A preprocessor directive is processed when the lines of a document are read, but before the docu­
ment structure is parsed. Therefore, it’s not aware of the surrounding document structure. A pre­
processor directive merely adds lines to the reader or takes lines away. The include directive is a
preprocessor directive that always adds lines.

Include processing | 363

The best way to think of the include directive is to imagine that it is being replaced by the lines
from the include file (i.e., the imported lines). Only after the lines from the target of the include
directive are added to the current document does the parser read and interpret those lines.


The include directive is disabled when Asciidoctor is run in secure mode. In secure
mode, the include directive is converted to a link in the output document. See Safe
Modes to learn more.

Escaping an include directive
If you don’t want the include directive to be processed, you must escape it using a backslash.

\include::just-an-example.ext[]

Escaping the directive is necessary even if it appears in a verbatim block since it’s not aware of the
surrounding document structure.

Include file resolution
The path used in an include directive can be relative or absolute.

If the path is relative, the processor resolves the path using the following rules:

• If the include directive is used in the primary (top-level) document, relative paths are resolved
relative to the base directory. (The base directory defaults to the directory of the primary docu­
ment and can be overridden from the CLI or API).

• If the include directive is used in a file that has itself been included, the path is resolved relative
to the including (i.e., current) file.

These defaults make it easy to reason about how the path to the include file is resolved.

If the processor cannot locate the file (perhaps because you mistyped the path), you’ll still be able to
convert the document. However, you’ll get the following warning message during conversion:

asciidoctor: WARNING: my-document.adoc: line 3: include file not found:
/.../content.adoc

The following message will also be inserted into the output:

Unresolved directive in my-document.adoc - include::content.adoc[]

To fix the problem, edit the file path and run the converter again. If you don’t want the AsciiDoc
processor to emit a warning, but rather drop the include that cannot be found, add the
opts=optional attribute to the include directive.

364 | Escaping an include directive

https://docs.asciidoctor.org/asciidoctor/latest/safe-modes/
https://docs.asciidoctor.org/asciidoctor/latest/safe-modes/

If you store your AsciiDoc files in nested folders at different levels, relative file paths can quickly
become awkward and inflexible. A common pattern to help here is to define the paths in attributes
defined in the header, then prefix all include paths with a reference to one of these attributes:

:includedir: _includes
:sourcedir: ../src/main/java

include::{includedir}/fragment1.adoc[]

[source,java]

include::{sourcedir}/org/asciidoctor/Asciidoctor.java[]

Keep in mind that no matter how Asciidoctor resolves the path to the file, access to that file is lim­
ited by the safe mode setting under which Asciidoctor is run. If a path violates the security restric­
tions, it may be truncated.

AsciiDoc vs non-AsciiDoc files
The include directive performs a simple file merge, so it works with any text file. The content of all
included content goes through some form of normalization.

The content of each include file is encoded to UTF-8. If the encoding attribute is specified on the
include directive, the content is reencoded from that encoding to UTF-8. If the encoding attribute is
not specified, the processor will look for the presence of a BOM and reencode the content from that
encoding to UTF-8 accordingly. If neither of those conditions are met, the encoding is forced to UTF-
8.

If the file is recognized as an AsciiDoc file (i.e., it has one of the following extensions: .asciidoc,
.adoc, .ad, .asc, or .txt) additional normalization and processing is performed. First, all trailing
whitespace and endlines are removed from each line and replaced with a Unix line feed. This nor­
malization is important to how an AsciiDoc processor works. Next, the AsciiDoc processor runs the
preprocessor on the lines, looking for and interpreting the following directives:

• includes

• preprocessor conditionals (e.g., ifdef)

Running the preprocessor on the included content allows includes to be nested, thus provides lot of
flexibility in constructing radically different documents with a single primary document and a few
command line attributes.

Including non-AsciiDoc files is normally done to merge output from other programs or populate ta­
ble data:

.2016 Sales Results
,===
include::sales/2016/results.csv[]

AsciiDoc vs non-AsciiDoc files | 365

,===

In this case, the include directive does not do any processing of AsciiDoc directives. The content is
inserted as is (after being normalized).

Offset Section Levels
When your document gets large, you can split it up into subdocuments for easier editing.

= My book

include::chapter01.adoc[]

include::chapter02.adoc[]

include::chapter03.adoc[]


Note the empty lines before and after the include directives. This practice is rec­
ommended whenever including AsciiDoc content to avoid unexpected results (e.g.,
a section title getting interpreted as a line at the end of a previous paragraph).

Manipulate heading levels with leveloffset

The leveloffset attribute can help here by pushing all headings in the included document down by
the specified number of levels. This allows you to publish each chapter as a standalone document
(complete with a document title), but still be able to include the chapters into a primary document
(which has its own document title).

You can easily assemble your book so that the chapter document titles become level 1 headings
using:

= My Book

include::chapter01.adoc[leveloffset=+1]

include::chapter02.adoc[leveloffset=+1]

include::chapter03.adoc[leveloffset=+1]

Because the leveloffset is relative (it begins with + or -), this works even if the included document
has its own includes and leveloffsets.

If you have lots of chapters to include and want them all to have the same offset, you can save some
typing by setting leveloffset around the includes:

= My book

366 | Offset Section Levels

:leveloffset: +1

include::chapter01.adoc[]

include::chapter02.adoc[]

include::chapter03.adoc[]

:leveloffset: -1

The final line returns the level offset to 0.

Alternatively, you could use absolute levels:

:leveloffset: 1

//includes

:leveloffset: 0

Relative levels are preferred. Absolute levels become awkward when you have nested includes
since they aren’t context aware.

Indent Included Content
Source code snippets from external files are often padded with a leading block indent. This leading
block indent is relevant in its original context. However, once inside the documentation, this lead­
ing block indent is no longer needed.

The indent attribute

The attribute indent allows the leading block indent to be stripped and, optionally, a new block
indent to be set for blocks with verbatim content (listing, literal, source, verse, etc.).

• When indent is 0, the leading block indent is stripped

• When indent is > 0, the leading block indent is first stripped, then the content is indented by the
number of columns equal to this value.

If the tabsize attribute is set on the block or the document, tabs are also replaced with the number
of spaces specified by that attribute, regardless of whether the indent attribute is set.

For example, this AsciiDoc source:

[source,ruby,indent=0]

 def names

Indent Included Content | 367

 @name.split ' '
 end

Produces:

def names
 @name.split ' '
end

This AsciiDoc source:

[source,ruby,indent=2]

 def names
 @name.split ' '
 end

Produces:

 def names
 @name.split ' '
 end

Use an Include File Multiple Times
A document can include the same file any number of times. The problem comes if there are IDs in
the included file; the output document (HTML or DocBook) will then have duplicate IDs which will
make it not well-formed. To fix this, you can reference a dynamic variable from the primary docu­
ment in the ID.

For example, let’s say you want to include the same subsection describing a bike chain in both the
operation and maintenance chapters:

= Bike Manual

:chapter: operation
== Operation

include::fragment-chain.adoc[]

:chapter: maintenance
== Maintenance

368 | Use an Include File Multiple Times

include::fragment-chain.adoc[]

Write fragment-chain.adoc as:

[id=chain-{chapter}]
=== Chain

See xref:chain-{chapter}[].

The first time the fragment-chain.adoc file is included, the ID of the included section resolves to
chain-operation. The second time the file included, the ID resolves to chain-maintenance.

In order for this to work, you must use the long-hand forms of both the ID assignment and the cross
reference. The single quotes around the variable name in the assignment are required to force vari­
able substitution (aka interpolation).

Include List Item Content
You can use the include directive to include the content of a list item from another file, but there
are some things you need to be aware of.

Recall that the include directive must be defined on a line by itself. This presents a challenge with
lists since each list item must begin with the list marker. We can solve this by using the built-in
empty attribute to initiate the list item, then follow that line with the include directive to bring in the
actual content.

Here’s an example of how to use the empty attribute and the include directive to define a list item,
then include the primary text from another file:

* {empty}
include::item-text.adoc[]

This technique works well if you control the contents of the included file and can ensure it only
contains adjacent lines of text. If a list item does not contain adjacent lines, the list may be termi­
nated. So we need a bit more syntax.

If you can’t guarantee that all the included lines will be adjacent, you’ll want to tuck the include
directive inside an open block. This keeps all the include lines together, enclosed inside the bound­
aries of the block. You then attach this block to the list item using a list continuation (i.e., +).

Here’s an example of how to include compound content from another file into a list item:

* {empty}
+
--
include::complex-list-item.adoc[]

Include List Item Content | 369

--

See dropping the principal text of a list item for another example of this technique.

Include Content by Tagged Regions
The include directive enables you to select portions of a file to include instead of including the
whole file. Use the lines attribute to include individual lines or a range of lines (by line number).
Use the tags attribute (or tag attribute for the singular case) to select lines that fall between regions
marked with user-defined tags.

When including multiple line ranges or multiple tags, each entry in the list must be separated by
either a comma or a semi-colon. If commas are used, the entire value must be enclosed in quotes
(per attribute rules). You can eliminate the need for quotes by using the semi-colon as the data sepa­
rator instead.

Tagging regions

Tags are useful when you want to identify specific regions of a file to include. You can then select
the lines between the boundaries of the include tag/end directives to include using the tags
attribute.

In the include file, the tag directives (e.g., tag::name[] and end::name[]) must follow a word bound­
ary and precede a space character or the end of line. The tag name must not be empty and must
consist exclusively of non-space characters.

Typically, the tag directives will be placed after a line comment as defined by the language of the
source file. This is especially important when using tags to include portions of an AsciiDoc docu­
ment which may itself be converted. If the tag is not behind a line comment, the tag will be treated
as regular content, which could disrupt the block structure, such as a table.

For languages that only support circumfix comments, such as XML, you can enclose the tag direc­
tives between the circumfix comment markers, offset by a space on either side. For example, in
XML files, you can use <!-- tag::name[] --> and <!-- end::name[] -->.

Including by tag includes all regions marked with that tag. This makes it possible to include a group
of lines from different regions of the document using a single tag.


If the target file has tagged lines, and you just want to ignore those lines, use the
tags attribute to filter them out. See Tag filtering for details.

The example below shows how you tag a region of content inside a file containing multiple code
examples. The tag directives are preceded by a hash (#) because that’s the start of a line comment in
Ruby.

Example 318. Tagged code snippets in a file named core.rb

tag::timings[] ① ②
if timings

370 | Include Content by Tagged Regions

 timings.record :read
 timings.start :parse
end
end::timings[] ③ ④
tag::parse[] ⑤
doc = (options[:parse] == false ? (Document.new lines, options) :
 (Document.new lines,options).parse)
timings.record :parse if timings
doc
end::parse[] ⑥

① To indicate the start of a tagged region, insert a comment line in the code.

② Assign a name to the tag directive. In this example, the tag is named timings.

③ Insert another comment line where you want the tagged region to end.

④ Assign the name of the region you want to terminate to the end directive.

⑤ This is the start of a tagged snippet named parse.

⑥ This is the end of the tagged snippet named parse.

In the next example, the tagged region named parse is selected by the include directive.

Example 319. Selecting the parse code snippet from a document

[source,ruby]

include::core.rb[tag=parse] ①

① In the directive’s brackets, set the tag attribute and assign it the unique name of the code snippet
you tagged in your code file.

You can include multiple tags from the same file.

Example 320. Selecting the timings and the parse code snippets from a document

[source,ruby]

include::core.rb[tags=timings;parse]

It’s also possible to have fine-grained tagged regions inside larger tagged regions.

In the next example, tagged regions are defined behind line comments. By putting each tag behind
a line comment, regardless of how the content is included, you don’t have to worry about those
lines appearing in the rendered document.

// tag::snippets[]
// tag::snippet-a[]

Include Content by Tagged Regions | 371

snippet a
// end::snippet-a[]

// tag::snippet-b[]
snippet b
// end::snippet-b[]
// end::snippets[]

Let’s assume you include this file using the following include directive:

include::file-with-snippets.adoc[tag=snippets]

The following lines will be selected and displayed:

snippet a

snippet b

You could also include the whole file without worry that the tags will be rendered:

include::file-with-snippets.adoc[]

Now let’s consider the case when the tags are not placed behind line comments. In this case, you
need to ensure that tag filtering is being used or else those tags will be visible in the rendered docu­
ment.

text a

tag::snippet-b[]
snippet b
end::snippet-b[]

text c

If you only want to include a specific tagged region of the file, use the following include directive:

include::file-with-snippets.adoc[tag=snippet-b]

The following lines will be selected and displayed:

snippet b

If you want to include the whole file, but also filter out any include tags, use the following include

372 | Include Content by Tagged Regions

directive:

include::file-with-snippets.adoc[tag=**]

The following lines will be selected and displayed:

text a
snippet b
text c

If you did not specify tag filtering, tag directives that aren’t behind a line comment (e.g., tag::snip­
pet-b[]) will also be printed too. Tag filtering is explained in more detail in the next section.

Tag filtering

The previous section showed how to select tagged regions explicitly, but you can also use wildcards
and exclusions. These expressions give you the ability to include or exclude tags in bulk. For exam­
ple, here’s how to include all lines that are not enclosed in a tag:

include::file-with-snippets.adoc[tag=!*]

When tag filtering is used, lines that contain a tag directive are always discarded (like a line com­
ment). Even if you’re not including content by tags, you can specify the double wildcard (**) to filter
out all lines in the include file that contain a tag directive.

The modifiers you can use for filtering are as follows:

*

The single wildcard. Select all tagged regions. May only be specified once, negated or not.

**

The double wildcard. Select all the lines in the document except for lines that contain a tag
directive. Use this symbol if you want to include a file that has tag directives, but you want to
discard the lines that contain a tag directive. May only be specified once, negated or not.

!

Negate the wildcard or tag.

The double wildcard is always applied first, regardless of where it appears in the list. If the double
wildcard is not negated (i.e., **), it should only be combined with exclusions (e.g., **;!foo). A
negated double wildcard (i.e., !**), which selects no lines, is usually implied as the starting point. A
negated single wildcard has different meaning depending on whether it comes before tag names
(e.g., !*;foo) or after at least one tag name (e.g., foo;!*).

Let’s assume we have a region tagged foo with a nested region tagged bar. Here are some of the per­
mutations you can use (along with their implied long-hand forms):

Include Content by Tagged Regions | 373

**

Selects all the lines in the document (except for lines that contain a tag directive). (implies **;*)

*

Selects all tagged regions in the document. Does not select lines outside of tagged regions.
(implies !**;*)

!*

Selects only the regions in the document outside of tags (i.e., non-tagged regions). (implies **;!*)

foo

Selects only regions tagged foo. (implies !**;foo)

foo;!bar

Selects only regions tagged foo, but excludes any nested regions tagged bar. (implies
!**;foo;!bar)

foo;!*

Selects only regions tagged foo, but excludes any nested tagged regions. (implies !**;foo;!*)

*;!foo

Selects all tagged regions, but excludes any regions tagged foo (nested or otherwise). (implies
!**;*;!foo)

!foo

Selects all the lines in the document except for regions tagged foo. (implies **;!foo)

!foo;!bar

Selects all the lines in the document except for regions tagged foo or bar. (implies **;!foo;!bar)

!*;foo

Selects the regions in the document outside of tags (i.e., non-tagged regions) and inside regions
tagged foo, excluding any nested tagged regions. To include nested tagged regions, they each
must be named explicitly. (implies **;!*;foo)

If the filter begins with a negated tag or single wildcard, it implies that the pattern begins with **.
An exclusion not preceded by an inclusion implicitly starts by selecting all the lines that do not con­
tain a tag directive. Otherwise, it implies that the pattern begins with !**. A leading inclusion
implicitly starts by selecting no lines.

Include Content by Line Ranges
The include directive supports selecting portions of the document to include. Using the lines
attribute, you can include ranges of line numbers.

When including multiple line ranges, each entry in the list must be separated by either a comma or
a semicolon. If commas are used, the entire value must be enclosed in quotes. Using the semicolon
as the data separator eliminates this requirement.

374 | Include Content by Line Ranges

Specifying line ranges

To include content by line range, assign a starting line number and an ending line number sepa­
rated by a pair of dots (e.g., lines=1..5) to the lines attribute.

include::filename.txt[lines=5..10]

You can specify multiple ranges by separating each range by a comma. Since commas are normally
used to separate individual attributes, you must quote the comma-separated list of ranges.

include::filename.txt[lines="1..10,15..20"]

To avoid having to quote the list of ranges, you can instead separate them using semicolons.

include::filename.txt[lines=7;14..25;28..43]

If you don’t know the number of lines in the document, or you don’t want to couple the range to the
length of the file, you can refer to the last line of the document using the value -1.

include::filename.txt[lines=12..-1]

Alternately, you can leave the end range unspecified and it will default to -1.

include::filename.txt[lines=12..]

Include Content by URI

Reference include content by URI

The include directive recognizes when the target is a URI and can include the content referenced by
that URI. This example demonstrates how to include an AsciiDoc file from a GitHub repository
directly into your document.

include::https://raw.githubusercontent.com/asciidoctor/asciidoctor/main/README.adoc[]

For security reasons, this capability is not enabled by default. To allow content to be read from a
URI, you must enable the URI read permission by:

1. running Asciidoctor in SERVER mode or less and

2. setting the allow-uri-read attribute securely from the CLI or API

Here’s an example that shows how to run Asciidoctor from the console so it can read content from

Include Content by URI | 375

a URI:

$ asciidoctor -a allow-uri-read filename.adoc

Remember that Asciidoctor executes in UNSAFE mode by default when run from the command line.

Here’s an example that shows how to run Asciidoctor from the API so it can read content from a
URI:

Asciidoctor.convert_file 'filename.adoc', safe: :safe, attributes: { 'allow-uri-read'
=> '' }



Including content from sources outside your control carries certain risks, includ­
ing the potential to introduce malicious behavior into your documentation.
Because allow-uri-read is a potentially dangerous feature, it is forcefully disabled
when the safe mode is SECURE or higher.

URI vs URL

URI stands for Uniform Resource Identifier. When we talk about a URI, we’re usually talking
about a URL, or Uniform Resource Locator. A URL is simply a URI that points to a resource
over a network, or web address.

As far as Asciidoctor is concerned, all URIs share the same restriction, whether or not it’s
actually local or remote, or whether it points to a web address (http or https prefix), FTP
address (ftp prefix), or some other addressing scheme.

The same restriction described in this section applies when embedding an image referenced from a
URI, such as when data-uri is set or when converting to PDF using Asciidoctor PDF.

Caching URI content

Reading content from a URI is obviously much slower than reading it from a local file.

Asciidoctor provides a way for the content read from a URI to be cached, which is highly recom­
mended.

To enable the built-in cache, you must:

1. Install the open-uri-cached gem.

2. Set the cache-uri attribute in the document.

When these two conditions are satisfied, Asciidoctor caches content read from a URI according the
to HTTP caching recommendations.

[1] Always separate consecutive include directives by an empty line unless your intent is to adjoin the content in the include files
so it becomes contiguous.

376 | Include Content by URI

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

Conditionals
You can include or exclude lines of text in your document using the following conditional pre­
processor directives:

• ifdef

• ifndef

• ifeval

When the processor encounters one of these conditionals, it evaluates the specified condition. The
condition is based on the presence or value of one or more document attributes. If the condition
evaluates to true, the lines the conditional encloses are included. Otherwise, the lines are skipped.

Conditional processing
Although a conditional preprocessor directive looks like a block macro, it’s not a macro and there­
fore isn’t processed like one. It’s a preprocessor directive; it’s important to understand the distinc­
tion.

A preprocessor directive is processed when the lines of a document are read, but before the docu­
ment structure is parsed. Therefore, it’s not aware of the surrounding document structure. A pre­
processor directive merely adds lines to the reader or takes lines away. The conditional preproces­
sor directives determine which lines to add and which ones to take away based on the condition.

Escape a conditional directive
If you don’t want a conditional preprocessor directive to be processed, you must escape it using a
backslash.

\ifdef::just-an-example[]

Escaping the directive is necessary even if it appears in a verbatim block since it’s not aware of the
surrounding document structure.

ifdef and ifndef Directives

ifdef directive

Content between the ifdef and endif directives gets included if the specified attribute is set:

Example 321. ifdef example

ifdef::env-github[]
This content is for GitHub only.
endif::[]

Conditional processing | 377

The syntax of the start directive is ifdef::<attribute>[], where <attribute> is the name of an
attribute.

Keep in mind that the content is not limited to a single line. You can have any amount of content
between the ifdef and endif directives.

If you have a large amount of content inside the ifdef directive, you may find it more readable to
use the long-form version of the directive, in which the attribute (aka condition) is referenced again
in the endif directive.

Example 322. ifdef long-form example

ifdef::env-github[]
This content is for GitHub only.

So much content in this section, I'd get confused reading the source without the
closing `ifdef` directive.

It isn't necessary for short blocks, but if you are conditionally including a section
it may be something worth considering.

Other readers reviewing your docs source code may go cross-eyed when reading your
source docs if you don't.
endif::env-github[]

If you’re only dealing with a single line of text, you can put the content directly inside the square
brackets and drop the endif directive.

Example 323. ifdef single line example

ifdef::revnumber[This document has a version number of {revnumber}.]

The single-line block above is equivalent to this formal ifdef directive:

ifdef::revnumber[]
This document has a version number of {revnumber}.
endif::[]

ifndef directive

ifndef is the logical opposite of ifdef. Content between ifndef and endif gets included only if the
specified attribute is not set:

Example 324. ifndef example

ifndef::env-github[]
This content is not shown on GitHub.
endif::[]

378 | ifdef and ifndef Directives

The syntax of the start directive is ifndef::<attribute>[], where <attribute> is the name of an
attribute.

The ifndef directive supports the same single-line and long-form variants as ifdef.

Checking multiple attributes

Both the ifdef and ifndef directives accept multiple attribute names. The combinator can be “and”
or “or”. The two combinators cannot be combined in the same expression.

ifdef with multiple attributes

If any attribute is set (or)

Multiple attribute names must be separated by commas (,). If one or more of the attributes are
set, the content is included. Otherwise, the content is not included.

Example 325. If any attribute example

ifdef::backend-html5,backend-docbook5[Only shown if converting to HTML (backend-
html5 is set) or DocBook (backend-docbook5 is set).]

If all attributes are set (and)

Multiple attribute names must be separated by pluses (+). If all the attributes are set, the content
is included. Otherwise, the content is not included.

Example 326. If all attributes example

ifdef::backend-html5+env-github[Only shown when converting to HTML (backend-html5
is set) on GitHub (env-github is set).]

ifndef with multiple attributes

The ifndef directive negates the results of the expression. When using the ifndef directive, the
expression should be read with the prefix “unless”.

Unless any attribute is set (or)

Multiple attribute names must be separated by commas (,). If one or more of the attributes are
set, the content is not included. Otherwise, the content is included.

Example 327. Unless any attribute example

ifndef::profile-production,env-site[Not shown if profile-production or env-site is
set.]

Unless all attributes are set (and)

Multiple attribute names must be separated by pluses (+). If all of the attributes are set, the con­
tent is not included. Otherwise, the content is included.

ifdef and ifndef Directives | 379

Example 328. Unless all attributes example

ifndef::profile-staging+env-site[Not shown if profile-staging and env-site are
set.]

ifeval Directive
Lines enclosed by an ifeval directive (i.e., between the ifeval and endif directives) are included if
the expression inside the square brackets of the ifeval directive evaluates to true.

Example 329. ifeval example

ifeval::[{sectnumlevels} == 3]
If the `sectnumlevels` attribute has the value 3, this sentence is included.
endif::[]

The ifeval directive does not have a single-line or long-form variant like ifdef and ifndef.

Unlike ifdef and ifndef, you cannot terminate a specific ifeval directive using its complement. For
example, the following ifeval block is not valid:

Example 330. Invalid ifeval terminator

ifeval::[<condition>]
conditional content
endif::[<condition>]

You can only terminate the previous ifeval directive using an anonymous endif::[] directive, as
shown here:

Example 331. Valid ineval terminator

ifeval::[<condition>]
conditional content
endif::[]

If you’re mixing ifeval directives with ifdef or ifndef directives, you should always close multiline
ifdef and ifndef directives by name (endif::name-of-attribute[]) so the ifeval directive does not
end prematurely.

Anatomy

The expression of an ifeval directive consists of a left-hand value and a right-hand value with an
operator in between. It’s customary to include a single space on either side of the operator.

Example 332. ifeval expression examples

ifeval::[2 > 1]

380 | ifeval Directive

...
endif::[]

ifeval::["{backend}" == "html5"]
...
endif::[]

ifeval::[{sectnumlevels} == 3]
...
endif::[]

// the value of outfilesuffix includes a leading period (e.g., .html)
ifeval::["{docname}{outfilesuffix}" == "main.html"]
...
endif::[]

Values

Each expression value can reference the name of zero or more AsciiDoc attributes using the
attribute reference syntax (for example, {backend}).

Attribute references are resolved (i.e., substituted) first. Once attributes references have been
resolved, each value is coerced to a recognized type.

When you expect the attribute reference to resolve to a string, that is, a sequence of characters,
enclose that side of the expression in quotes. For example:

Example 333. ifeval that compares two string expressions

ifeval::["{backend}" == "html5"]

If you expect the attribute to resolve to a number, you do not need to enclose the expression in
quotes. In this case, the values will be compared as numbers. The same rule applies to boolean val­
ues.

You should not attempt to mix value types in a comparison. For example, the following expression
is not valid:

Example 334. Invalid ifeval expression

ifeval::["{sectnumlevels}" > 3]

The following values types are recognized:

number

Either an integer or floating-point value.

quoted string

Enclosed in either single (') or double (") quotes.

ifeval Directive | 381

boolean

Literal value of true or false.

How value type coercion works

If a value is enclosed in quotes, the characters between the quotes is used and always coerced to a
string.

If a value is not enclosed in quotes, it’s subject to the following type coercion rules:

• an empty value becomes nil (aka null) (and thus safe for use in a comparison).

• a value of true or false becomes a boolean value.

• a value of only repeating whitespace becomes a single whitespace string.

• a value containing a period becomes a floating-point number.

• any other value is coerced to an integer value.

Operators

The value on each side is compared using the operator to derive an outcome.

==

Checks if the two values are equal.

!=

Checks if the two values are not equal.

<

Checks whether the left-hand side is less than the right-hand side.

<=

Checks whether the left-hand side is less than or equal to the right-hand side.

>

Checks whether the left-hand side is greater than the right-hand side.

>=

Checks whether the left-hand side is greater than or equal to the right-hand side.

Both sides should be of the same value type. If they are not, the comparison will fail. If the compari­
son fails, the condition will evaluate to false (i.e., the content inside the directive will be skipped).

The operators follow the same rules as operators in Ruby.

382 | ifeval Directive

Substitutions
Substitutions are applied to leaf content of a block. Substitutions determine how the text is inter­
preted. If no substitutions are applied, the text is passed to the converter as entered. Otherwise, the
substitutions transform that text.

Substitutions replace references, formatting marks, characters and character sequences, and
macros. Substitutions are organized into types and those types are bundled into groups. This page
provides an overview of these classifications. Subsequent pages go into detail about each substitu­
tion type.

Substitution types
Each substitution type replace characters, markup, attribute references, and macros in text with
the appropriate output for a given converter. When a document is processed, up to six substitution
types may be carried out depending on the block or inline element’s assigned substitution group.
The processor runs the substitutions in the following order:

1. Special Characters

2. Quotes (i.e., inline formatting)

3. Attribute References

4. Character Replacements

5. Macros

6. Post Replacements

For convenience, these types are grouped and ordered into substitution groups.

Substitution groups
Each block and inline element has a default substitution group that is applied unless you customize
the substitutions for a particular element. Table 5 shows the substitution types that are executed in
each group.

Table 5. Substitution types used by each substitution group

Group Special
characters

Quotes Attributes Replace­
ments

Macros Post
replace­
ments

Header Yes No Yes No No No

None No No No No No No

Normal Yes Yes Yes Yes Yes Yes

Pass No No No No No No

Verbatim Yes No No No No No

Substitution types | 383

Normal substitution group

The normal substitution group (normal) is applied to the majority of the AsciiDoc block and inline
elements except for those specific elements listed under the groups described in the next sections.

Header substitution group

The header substitution group (header) is applied to metadata lines (author and revision informa­
tion) in the document header. It’s also applied to the values of attribute entries, regardless of
whether those entries are defined in the document header or body. Only special characters,
attribute references, and the inline pass macro are replaced in elements that fall under the header
group.


You can use the inline pass macro in attribute entries to customize the substitution
types applied to the attribute’s value.

Verbatim substitution group

Literal, listing, and source blocks are processed using the verbatim substitution group (verbatim).
Only special characters are replaced in these blocks.

Pass substitution group

No substitutions are applied to three of the elements in the pass substitution group (pass). These ele­
ments include the passthrough block, inline pass macro, and triple plus macro.

The inline single plus and double plus macros also belong to the pass group. Only the special char­
acters substitution is applied to these elements.

None substitution group

The none substitution group (none) is applied to comment blocks. No substitutions are applied to
comments.

Escaping substitutions
The AsciiDoc syntax offers several approaches for preventing substitutions from being applied.
When you want to prevent punctuation and symbols from being interpreted as formatting markup,
escaping the punctuation with a backslash may be sufficient. For more comprehensive substitution
prevention and control, you can use inline passthrough macros or passthrough blocks.

Special Characters
The special characters substitution step searches for three characters (<, >, &) and replaces them
with their named character references.

• The less than symbol, <, is replaced with the named character reference <.

• The greater than symbol, >, is replaced with the named character reference >.

384 | Escaping substitutions

• An ampersand, &, is replaced with the named character reference &.

Default special characters substitution

Table 6 lists the specific blocks and inline elements the special characters substitution step applies
to automatically.

Table 6. Blocks and inline elements subject to the special characters substitu­
tion

Blocks and elements Substitution step applied by default

Attribute entry values Yes

Comments No

Examples Yes

Headers Yes

Literal, listings, and source Yes

Macros Yes
(except triple plus and inline pass macros)

Open Yes

Paragraphs Yes

Passthrough blocks No

Quotes and verses Yes

Sidebars Yes

Tables Yes

Titles Yes

specialchars substitution value

The special characters substitution step can be modified on blocks and inline elements. For blocks,
the step’s name, specialchars, can be assigned to the subs attribute. For inline elements, the built-in
values c or specialchars can be applied to inline text to add the special characters substitution step.



Special character substitution precedes attribute substitution, so you need to man­
ually escape any attributes containing special characters that you set in the CLI or
API. For example, on the command line, type -a toc-title="Sections, Tables
\& Figures" instead of -a toc-title="Sections, Tables & Figures".

Quotes
The replacement of the formatting markup on inline elements is called the quotes substitution step.

Quotes | 385

Example 335. Syntax input

Happy werewolves are *really* slobbery.

For instance, when a document containing the markup in Example 335 is converted to HTML, any
asterisks enclosing text are replaced with the start and end tags of the element. The result­
ing HTML can be seen in Example 336 below.

Example 336. HTML output

Happy werewolves are really slobbery.

Table 7 shows the HTML source code that is generated by the quotes substitution step.

Table 7. HTML source code generated from AsciiDoc formatting
syntax

Name AsciiDoc HTML

emphasis _word_ word

strong *word* word

monospace `word` <code>word</code>

superscript ^word^ ^{word}

subscript ~word~ _{word}

double curved quotes "`word`" “word”

single curved quotes '`word`' ‘word’

Default quotes substitution

Table 8 lists the specific blocks and inline elements the quotes substitution step applies to automati­
cally.

Table 8. Blocks and inline elements subject to the quotes substitution

Blocks and elements Substitution step applied by default

Attribute entry values No

Comments No

Examples Yes

Literal, listings, and source No

Macros Yes
(except passthrough macros)

Open Yes

Paragraphs Yes

Passthrough blocks No

386 | Quotes

Blocks and elements Substitution step applied by default

Quotes and verses Yes

Sidebars Yes

Tables Varies

Titles Yes

quotes substitution value

The quotes substitution step can be modified on blocks and inline elements. For blocks, the step’s
name, quotes, can be assigned to the subs attribute. For inline elements, the built-in values q or
quotes can be applied to inline text to add the quotes substitution step.

Attribute References
Attribute references are replaced with the values of the attribute they reference when processed by
the attributes substitution step.

Default attributes substitution

Table 9 lists the specific blocks and inline elements the attributes substitution step applies to auto­
matically.

Table 9. Blocks and inline elements subject to the attributes substitution

Blocks and elements Substitution step applied by default

Attribute entry values Yes

Comments No

Examples Yes

Headers Yes

Literal, listings, and source No

Macros Yes
(except passthrough macros)

Open Yes

Paragraphs Yes

Passthrough blocks No

Quotes and verses Yes

Sidebars Yes

Tables Varies

Titles Yes

Attribute References | 387

attributes substitution value

The attributes substitution step can be modified on blocks and the inline passthrough. For blocks,
the step’s name, attributes, can be assigned to the subs attribute. For an inline passthrough, the
built-in values a or attributes can be applied to inline text to add or remove the attributes substitu­
tion step. Single occurrences of an attribute reference can be escaped by prefixing the expression
with a backslash.

Character Replacements
The character replacement substitution step processes textual characters such as marks, arrows
and dashes and replaces them with the decimal format of their Unicode code point, i.e., their
numeric character reference. The replacements step depends on the substitutions completed by the
special characters step.

Table 10. Textual symbol replacements

Name Syn­
tax

Unicode
Replacement

Ren­
dered

Notes

Copyright (C) © ©

Registered (R) ® ®

Trademark (TM) ™ ™

Em dash -- —  —  Only replaced if between two word characters,
between a word character and a line boundary, or
flanked by spaces.

When flanked by space characters (e.g., a -- b), the
normal spaces are replaced by thin spaces ( ).
Otherwise, the em dash is followed by a zero-width
space (​) to provide a break opportunity.

Ellipsis ... … … The ellipsis is followed by a zero-width space
(​) to provide a break opportunity.

Single right
arrow

-> → →

Double right
arrow

=> ⇒ ⇒

Single left
arrow

<- ← ←

Double left
arrow

<= ⇐ ⇐

Typographic
apostrophe

Sam'
s

Sam’s Sam’s The typewriter apostrophe is replaced with the typo­
graphic (aka curly or smart) apostrophe.

This substitution step also recognizes HTML and XML character references as well as decimal and
hexadecimal Unicode code points and substitutes them for their corresponding decimal form Uni­

388 | Character Replacements

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters

code code point.

For example, to produce the § symbol you could write §, §, or §. When the docu­
ment is processed, replacements will preserve the section symbol reference so the reference will
appear as § when rendered. In turn, § in the AsciiDoc source will display as § in the rendered
document.

An AsciiDoc processor allows you to use any of the named character references (aka named enti­
ties) defined in HTML (e.g., € resolves to €). However, using named character references can
cause problems when generating non-HTML output such as PDF because the lookup table needed to
resolve these names may not be defined. The recommendation is avoid using named character ref­
erences, with the exception of the well-known ones defined in XML (i.e., lt, gt, amp, quot, apos).
Instead, use numeric character references (e.g., €).

Anatomy of a character reference

A character reference is a standard sequence of characters that is substituted for a single
character by an AsciiDoc processor. There are two types of character references: named char­
acter references and numeric character references.

A named character reference (often called a character entity reference) is a short name that
refers to a character (i.e., glyph). To make the reference, the name must be prefixed with an
ampersand (&) and end with a semicolon (;).

For example:

• † displays as †

• € displays as €

• ◊ displays as ◊

Numeric character references are the decimal or hexadecimal Universal Character Set/Uni­
code code points which refer to a character.

• The decimal code point references are prefixed with an ampersand (&), followed by a hash
(#), and end with a semicolon (;).

• Hexadecimal code point references are prefixed with an ampersand (&), followed by a
hash (#), followed by a lowercase x, and end with a semicolon (;).

For example:

• † or † displays as †

• € or € displays as €

• ◊ or ◊ displays as ◊

Developers may be more familiar with using Unicode escape sequences to perform text sub­
stitutions. For example, to produce an @ sign using a Unicode escape sequence, you would
prefix the hexadecimal Unicode code point with a backslash (\) and an uppercase or lower­
case u, i.e. u0040. However, the AsciiDoc syntax doesn’t recognize Unicode escape sequences at

Character Replacements | 389

this time.


AsciiDoc also provides built-in attributes for representing some common symbols.
These attributes and their corresponding output are listed in Character Replace­
ment Attributes Reference.

Default replacements substitution

Table 11 lists the specific blocks and inline elements the replacements substitution step applies to
automatically.

Table 11. Blocks and inline elements subject to the replacements substitu­
tion

Blocks and elements Substitution step applied by default

Attribute entry values No

Comments No

Examples Yes

Headers No

Literal, listings, and source No

Macros Yes
(except passthrough macros)

Open Yes

Paragraphs Yes

Passthrough blocks No

Quotes and verses Yes

Sidebars Yes

Tables Varies

Titles Yes

replacements substitution value

The replacements substitution step can be modified on blocks and inline elements. For blocks, the
step’s name, replacements, can be assigned to the subs attribute. For inline elements, the built-in val­
ues r or replacements can be applied to inline text to add the replacements substitution step.


The replacements step depends on the substitutions completed by the special char­
acters step. This is important to keep in mind when applying the replacements
value to blocks and inline elements.

390 | Character Replacements

Macros
The content of inline and block macros, such as cross references, links, and block images, are
processed by the macros substitution step. The macros step replaces a macro’s content with the
appropriate built-in and user-defined configuration.

Default macros substitution

Table 12 lists the specific blocks and inline elements the macros substitution step applies to auto­
matically.

Table 12. Blocks and inline elements subject to the macros substitution

Blocks and elements Substitution step applied by default

Attribute entry values Only the pass macro

Comments No

Examples Yes

Headers No

Literal, listings, and source No

Macros Yes

Open Yes

Paragraphs Yes

Passthrough blocks No

Quotes and verses Yes

Sidebars Yes

Tables Varies

Titles Yes

macros substitution value

The macros substitution step can be modified on blocks and inline elements. For blocks, the step’s
name, macros, can be assigned to the subs attribute. For inline elements, the built-in values m or
macros can be applied to inline text to add the macros substitution step.

Post Replacements
The line break character, +, is replaced when the post_replacements substitution step runs.

Default post replacements substitution

Table 13 lists the specific blocks and inline elements the post replacements substitution step applies
to automatically.

Macros | 391

Table 13. Blocks and inline elements subject to the post replacements substi­
tution

Blocks and elements Substitution step applied by default

Attribute entry values No

Comments No

Examples Yes

Headers No

Literal, listings, and source No

Macros Yes
(except passthrough macros)

Open Yes

Paragraphs Yes

Passthrough blocks No

Quotes and verses Yes

Sidebars Yes

Tables Varies

Titles Yes

post_replacements substitution value

The post replacements substitution step can be modified on blocks and inline elements. For blocks,
the step’s name, post_replacements, can be assigned to the subs attribute. For inline elements, the
built-in values p or post_replacements can be applied to inline text to add the post replacements sub­
stitution step.

Customize the Substitutions Applied to Blocks
Each block context is associated with a set default substitutions that best suit the content model.
However, there are situations where you may need a different set of substitutions to be applied. For
example, you may want the AsciiDoc processor to substitute attribute references in a listing block.
Therefore, the AsciiDoc language provides a mechanism for altering the substitutions on a block.

The subs attribute

The substitutions that get applied to a block (and to certain inline elements) can be changed or
modified using the subs element attribute. This attribute accepts a comma-separated list of substitu­
tion steps or groups. The list replaces the substitutions normally applied to a block unless incremen­
tal substitutions are specified.

The names of those substitution steps and groups are as follows:

392 | Customize the Substitutions Applied to Blocks

none

Substitution group that disables all substitutions.

normal

Substitution group that performs all substitution types except callouts.

verbatim

Substitution group that replaces special characters and processes callouts.

specialchars

Substitution step that replaces <, >, and & with their corresponding entities. For source blocks,
this substitution step enables syntax highlighting as well.

callouts

Substitution step that processes callouts in literal, listing, and source blocks.

quotes

Substitution step that applies inline text formatting.

attributes

Substitution step that replaces attribute references.

replacements

Substitution step that replaces hexadecimal Unicode code points and entity, HTML, and XML
character references with the characters' decimal Unicode code point. The output of replace­
ments may depend on whether the specialcharacters substitution was previously applied.

macros

Substitution step that processes inline and block macros.

post_replacements

Substitution step that processes the line break character (+).

If a + or - modifier is added to a step, the existing substitutions are modified accordingly (see incre­
mental subs). Otherwise, the existing substitutions are replaced. The value also specifies the order
in which the substitutions are applied.


The subs element attribute does not inherit to nested blocks. It can only be applied
to a leaf block, which is any block that cannot have child blocks (e.g., a paragraph
or a listing block).

Set the subs attribute on a block



You should almost always prefer to use incremental substitutions. Only switch to
exact substitutions when you require very specific control. That’s because setting
the subs attribute on a block only uses the substitutions specified. In contrast,
incremental substitutions amends the default substitutions for that block.

Customize the Substitutions Applied to Blocks | 393

Let’s look at an example where you want to process inline formatting markup in a source block. By
default, source blocks (as well as other verbatim blocks) are only subject to the verbatim substitu­
tion group (specialchars and callouts). You can change this behavior by setting the subs attribute in
the block’s attribute list.

[source,java,subs="verbatim,quotes"] ①

System.out.println("Hello *<name>*") ②

① The subs attribute is set in the attribute list and assigned the verbatim and quotes values. It’s
important to reinstate the verbatim substitution step to ensure special characters are encoded
(which, for source blocks, also enables syntax highlighting).

② The formatting markup in this line will be replaced when the quotes substitution step runs.

Here’s the result.

System.out.println("Hello <name>") ① ②

① The verbatim value enables any special characters and callouts to be processed.

② The quotes value enables the bold text formatting to be processed.

If enabling the quotes substitution step on the whole block causes problems, you can instead enable
the macros substitution step, then use the pass macro to enable the quotes substitution step locally.

[source,java,subs="verbatim,macros"]

System.out.println("No bold *here*");
pass:c,q[System.out.println("Hello *<name>*");] ①

① The pass macro with the c,q target applies the specialchars and quotes substitution steps to the
enclosed text.

You may be wondering why verbatim is specified in the previous examples since it’s applied to lit­
eral blocks by default. The reason is that when you specify substitutions without a modifier, it
replaces all existing substitutions. Therefore, it’s necessary to start with verbatim in order to restore
the default substitutions. You can avoid having to do this by using incremental substitutions
instead, which is covered in the next section.

Add and remove substitution types from a default substitution group

When you set the subs attribute on a block, you automatically remove all of its default substitu­
tions. For example, if you set subs on a literal block, and assign it a value of attributes, only
attribute references are substituted. The verbatim substitution group will not be applied. To remedy

394 | Customize the Substitutions Applied to Blocks

this situation, AsciiDoc provides a syntax to append or remove substitutions instead of replacing
them outright.

You can add or remove a substitution type from the default substitution group using the plus (+)
and minus (-) modifiers. These are known as incremental substitutions.

<substitution>+

Prepends the substitution to the default list.

+<substitution>

Appends the substitution to the default list.

-<substitution>

Removes the substitution from the default list.

For example, you can add the attributes substitution to the beginning of a listing block’s default
substitution group by placing the plus (+) modifier at the end of the attributes value.

Example 337. Add attributes substitution to default substitution group

[source,xml,subs="attributes+"]

<version>{version}</version>

Similarly, you can remove the callouts substitution from a block’s default substitution group by
placing the minus (-) modifier in front of the callouts value.

Example 338. Remove callouts substitution from default substitution group

[source,xml,subs="-callouts"]
.An illegal XML tag

<1>
 content inside "1" tag
</1>

You can also specify whether the substitution type is added to the end of the substitution group. If a
+ comes before the name of the substitution, then it’s added to the end of the existing list, whereas if
a + comes after the name, it’s added to the beginning of the list.

[source,xml,subs="attributes+,+replacements,-callouts"]

<version>{version}</version>
<copyright>(C) ACME</copyright>
<1>
 content inside "1" tag
</1>

Customize the Substitutions Applied to Blocks | 395

In the above example, the attributes substitution step is added to the beginning of the default sub­
stitution group, the replacements step is added to the end of the group, and the callouts step is
removed from the group.



If you are applying the same set of substitutions to numerous blocks, you should
consider making them an attribute entry to ensure consistency.

:markup-in-source: +quotes

[source,java,subs="{markup-in-source}"]

System.out.println("Hello *bold* text").

Another way to ensure consistency and keep your documents clean and simple is
to use the tree Processor extension.

Customize the Substitutions Applied to Text
The inline pass macro (pass:[]) accepts the shorthand values in addition to the longhand values for
specifying substitution types.

• c or specialchars

• q or quotes

• a or attributes

• r or replacements

• m or macros

• p or post_replacements

Apply substitutions to inline text

Custom substitutions can also be applied to inline text with the pass macro. For instance, let’s
assume you need to mark a span of text as deleted using the HTML element in your AsciiDoc
document. You’d do this with the inline pass macro.

Example 339. Inline pass macro syntax

The text pass:[strike this] is marked as deleted.

The result of Example 339 is rendered below.

396 | Customize the Substitutions Applied to Text

https://docs.asciidoctor.org/asciidoctor/latest/extensions/tree-processor/

The text strike this is marked as deleted.

However, you also need to bold the text and want to use the AsciiDoc markup for that formatting.
In this case, you’d assign the quotes substitution to the inline pass macro.

Example 340. Assign quotes to inline pass macro

The text pass:q[strike *this*] is marked as deleted, inside of which the
word "`me`" is bold.

The result of Example 340 is rendered below.

The text strike this is marked as deleted, inside of which the word “me” is bold.

You can also assign custom substitutions to inline text that’s in a block. In the listing block below,
we want to process the inline formatting on the second line.

Example 341. Listing block with inline formatting

[subs=+macros] ①

I better not contain *bold* or _italic_ text.
pass:quotes[But I should contain *bold* text.] ②

① macros is assigned to subs, which allows the pass macro within the block to be processed.

② The pass macro is assigned the quotes value. Text within the square brackets will be formatted.

The result of Example 341 is rendered below.

I better not contain *bold* or _italic_ text.
But I should contain bold text.

Escape and Prevent Substitutions
The AsciiDoc syntax offers several approaches for preventing substitutions from being applied.

Escape with backslashes

To prevent a punctuation character from being interpreted as an attribute reference or formatting
syntax (e.g., _, ^) in normal content, prepend the character with a backslash (\).

Escape and Prevent Substitutions | 397

Example 342. Prevent unintended substitutions with a backslash in normal content

In /items/\{id}, the id attribute isn't replaced.
The curly braces around it are preserved.

Stars isn't displayed as bold text.
The asterisks around it are preserved.

\§ appears as an entity reference.
It's not converted into the section symbol (§).

\=> The backslash prevents the equals sign followed by a greater
than sign from combining to form a double arrow character (=>).

\[[Word]] is not interpreted as an anchor.
The double brackets around it are preserved.

[\[[Word]]] is not interpreted as a bibliography anchor.
The triple brackets around it are preserved.

\((DD AND CC) OR (DD AND EE)) is not interpreted as a flow index term.
The double brackets around it are preserved.

The URL \https://example.org isn't converted into an active link.

The backslash can also prevent character replacements, macros, and attribute replacements. The
results of Example 342 are below.

In /items/{id}, the id attribute isn’t replaced. The curly braces around it are preserved.

Stars isn’t displayed as bold text. The asterisks around it are preserved.

§ appears as an entity reference. It’s not converted into the section symbol (§).

=> The backslash prevents the equals sign followed by a greater than sign from combining to
form a double arrow character (⇒).

[[subs:prevent:::Word]] is not interpreted as an anchor. The double brackets around it are pre­
served.

[[[subs:prevent:::Word]]] is not interpreted as a bibliography anchor. The triple brackets
around it are preserved.

((DD AND CC) OR (DD AND EE)) is not interpreted as a flow index term. The double brackets
around it are preserved.

The URL https://example.org isn’t converted into an active link.

Notice that the backslash is removed so it doesn’t display in your output.

398 | Escape and Prevent Substitutions

To prevent two adjacent characters (e.g., __, ##), from being interpreted as AsciiDoc syntax you need
to precede it with two backslashes (\\).

Example 343. Prevent unintended substitutions with two backslashes in normal content

The text __func__ will appear with two underscores
in front of it and after it.
It won't be italicized.

The results of Example 343 are below.

The text __func__ will appear with two underscores in front of it and after it. It won’t be itali­
cized.

Passthroughs

A passthrough is the primary mechanism by which to escape content in AsciiDoc. They’re far more
comprehensive and consistent than using a backslash. As the name implies, a passthrough passes
content directly through to the output document without applying any substitutions.

You can control and prevent substitutions in inline text with the inline passthrough macros and for
entire blocks of content with the block passthrough.

The inline + passthrough takes precedence over all other inline formatting. Therefore, if you need
to output a literal plus when it would otherwise match a passthrough, you have two options.

First, you can escape it using the {plus} attribute reference:

`{plus}` and `{plus}`

Alternately, you can escape the pair using a backslash.

`\+` and `+`

The backslash is only required before the pair, not before each occurance of the plus.

Escape and Prevent Substitutions | 399

Passthroughs
A passthrough is a mechanism in AsciiDoc for passing chunks of content directly through to the out­
put. Most passthroughs give you control over which substitutions are applied to the content. Asci­
iDoc provides both block and inline forms of the passthrough.

The block form of the passthrough is represented either by the ++++ block delimiters or the pass
style on a paragraph. The main use of the block form is to pass a chunk of non-AsciiDoc content
directly through to the output. For example, you can use the passthrough block to pass raw HTML
to the HTML output. However, by doing so, you’re coupling your AsciiDoc content to an output for­
mat, thus making it less portable. It’s best either to leave the use of the passthrough block up to an
extension, or enclose it in a preprocessor conditional.

The inline form of the passthrough comes in more forms and thus has more uses. An inline
passthrough is represented by the macro or by pairs of one to three pluses. Only the macro gives
you control over the substitutions that are applied. While an inline passthrough can be used to pass
raw content like HTML to the output, far more often it’s used as a way to escape content from inline
formatting. For example, you can use an inline passthrough to output characters that would other­
wise be replaced, such as three sequential periods.

Passthrough Blocks
The pass style and delimited passthrough block exclude the block’s content from all substitutions
unless the subs attribute is set.

Pass style syntax

The pass style can also be set on a paragraph or an open block.

[pass]
strike this is marked as deleted.

Delimited passthrough block syntax

A passthrough block is delimited by four plus signs (++++).

++++
<video poster="images/movie-reel.png">
 <source src="videos/writing-zen.webm" type="video/webm">
</video>
++++

(Keep in mind that AsciiDoc has a video macro, so this example is merely for demonstration. How­
ever, a passthrough could come in handy if you need to output more sophisticated markup than
what the built-in HTML converter produces).

400 | Passthrough Blocks

Control substitutions on a passthrough block

You can use the subs attribute to specify a comma-separated list of substitutions. These substitu­
tions will be applied to the content prior to it being reintroduced to the output document.

[subs=attributes]
++++
{name}
image:tiger.png[]
++++

The content of the pass block does not get wrapped in a paragraph. Therefore, you can use the pass
style in combination with the normal substitution category to output content without generating a
paragraph.

[subs=normal]
++++
Normal content which is not enclosed in a paragraph.
++++



Using passthroughs to pass content (without substitutions) can couple your con­
tent to a specific output format, such as HTML. In these cases, you should use con­
ditional preprocessor directives to route passthrough content for different output
formats based on the current backend.

Inline Passthroughs
AsciiDoc supports several inline passthrough macros and shorthands. Inline passthroughs are
designed to prevent subsitutions for regions of text, or to give you more fine-grained control over
which substitutions are applied.



Due to the fact that inline syntax in AsciiDoc is processed using substitutions
rather than a descending grammar, it’s possible to create invalid interleaving of
inline elements, or other adverse interactions, that leads to invalid or illogical out­
put. The inline passthrough provides a bailout option to mitigate these entangle­
ments. This problem is expected to be resolved properly by the AsciiDoc Language
Specification, which will mandate that inline syntax is parsed as a tree rather than
through substitutions (to the degree possible).

Inline passthrough macros

single and double plus

A special syntax for preventing inline text from being formatted. Only special characters are
replaced in the output format. The substitutions can’t be modified for this type of passthrough.

Inline Passthroughs | 401

triple plus

A special inline syntax for designating passthrough content. No substitutions are applied nor can
they be added using the step and group substitution values.

inline pass macro

An inline macro named pass that can be used to passthrough content. You can apply specific sub­
stitutions to the macro’s target using substitution types and groups.

pass:[content like #{variable} passed directly to the output] followed by normal
content.

content with only select substitutions applied: pass:c,a[__<{email}>__]


When you need to prevent or control the substitutions on one or more blocks of
content, use a delimited passthrough block or the pass block style.

Single and double plus

The single and double plus passthroughs prevent text enclosed in either a pair of single pluses (+) or
a pair of double pluses (++) from being formatted.

A +word+, a +sequence of words+, or ++char++acters that are escaped from formatting.

The single and double pluses represent the constrained and unconstrained passthrough, respec­
tively. They have boundaries that match the constrained and unconstrained formatting marks. The
main difference, however, is that they are applied first to suppress formatting.

This type of passthrough is intended to suppress any special meaning of the source text itself. This
passthrough type still ensures, however, that the content is properly escaped in the output. That
means the special characters substitution is still applied.

As with all constrained pairs, the single plus passthrough is designed to be used around a word or
phrase.

A word or phrase between single pluses, such as +/document/{id}+, is not substituted.
However, the special characters +<+ and +>+ are still escaped in the output.

You can also escape formatting marks, like +``+.

Being an unconstrained pair, the double plus passthrough can be used anywhere in the text.

Text formatting is not applied to a link target if it is surrounded by double pluses.
For example, link:++https://example.org/now_this__link_works.html++[].

You can also escape formatting marks, like all-natural++*++.

402 | Inline Passthroughs

An attribute reference within a word, such as dev++{conf}++, is not replaced.

The single and plus passthroughs are a surefire alternative to backslash escaping.

Note that the single and plus passthroughs only prevent substitutions. They do not format the text
in monospace. If you want to do both, you must enclose the pair in a monospace formatting pair,
known as literal monospace.

Triple plus

The triple plus passthrough excludes content enclosed in a pair of triple pluses (+++) from all substi­
tutions.

+++content passed directly to the output+++ followed by normal content.

The triple plus macro is often used to output custom HTML or XML.

The text +++strike this+++ is marked as deleted.

The text strike this is marked as deleted.

Inline pass macro

Like other inline passthroughs, the inline pass macro can be used to control the substitutions
applied to a run of text. To exclude inline content from all of the substitutions, enclose it in the
inline pass macro.

Here’s one way to format text as underline when generating HTML from AsciiDoc:

The text pass:[strike this] is marked as deleted.

And here’s the result.

The text strike this is marked as deleted.



Using passthroughs to send content directly to the output can couple your content
to a specific output format, such as HTML. To avoid this risk, you should consider
using conditional preprocessor directives to select content for different output for­
mats based on the current backend.

What sets the inline pass macro apart from the alternatives is that it allows the substitutions to be
customized. The inline pass macro also plays a critical role in the document header. In fact, it’s the

Inline Passthroughs | 403

only macro that is processed in the document header by default as part of the header substitution
group (though it can be used to enable other substitutions, as demonstrated in this section).

Let’s look at how to use the inline pass macro to hand select substitutions.

Custom substitutions

You can customize the substitutions applied to the content of an inline pass macro by specifying
one or more substitution values in the target of the macro. Multiple values must be separated by
commas and may not contain any spaces. The substitution value is either the formal name of a sub­
stitution type or group, or its shorthand.

The following table lists the allowable substitution values:

Substitution values accepted by the inline pass macro

Shorthand Substitution Type

c specialchars

q quotes

a attributes

r replacements

m macros

p post replacements

Shorthand Substitution Group

n normal

v verbatim

For example, the quotes substitution (i.e., q or quotes) is enabled on the inline passthrough macro as
follows:

The text pass:q[strike *this*] is marked as deleted.

Here’s the result.

The text strike this is marked as deleted.

To enable multiple substitution groups, separate each value in the macro target by a comma:

The text pass:q,a[strike _{docname}_] is marked as deleted.

Here’s the result.

The text strike pass-macro is marked as deleted.

404 | Inline Passthroughs

Nesting blocks and passthroughs

When you’re using passthroughs inside literal and listing blocks, it can be easy to forget that the
single plus and triple plus passthroughs are macros substitutions. To enable the passthroughs,
assign the macros value to the subs attribute.

[source,java,subs="+quotes,+macros"]

protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/resources/++++++").permitAll()**
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login")
 .permitAll();

To learn more about applying substitutions to blocks, see Customize the Substitutions Applied to
Blocks.

protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/resources/**").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login")
 .permitAll();

Inline Passthroughs | 405

Reference

Syntax Quick Reference


The examples on this page demonstrate the output produced by the built-in HTML
converter. An AsciiDoc converter is expected to produce complementary output
when generating other output formats, such as PDF, EPUB, and DocBook.

Paragraphs

Example 344. Paragraph

Paragraphs don't require special markup in AsciiDoc.
A paragraph is defined by one or more consecutive lines of text.
Line breaks within a paragraph are not displayed.

Leave at least one empty line to begin a new paragraph.

▼ View result of Example 344

Paragraphs don’t require special markup in AsciiDoc. A paragraph is defined by one or more con­
secutive lines of text. Line breaks within a paragraph are not displayed.

Leave at least one empty line to begin a new paragraph.

Example 345. Literal paragraph

A normal paragraph.

 A literal paragraph.
 One or more consecutive lines indented by at least one space.

 The text is shown in a fixed-width (typically monospace) font.
 The lines are preformatted (i.e., as formatted in the source).
 Spaces and newlines,
 like the ones in this sentence,
 are preserved.

▼ View result of Example 345

A normal paragraph.

A literal paragraph.
One or more consecutive lines indented by at least one space.

The text is shown in a fixed-width (typically monospace) font.
The lines are preformatted (i.e., as formatted in the source).

406 | Syntax Quick Reference

Spaces and newlines,
like the ones in this sentence,
are preserved.

Example 346. Hard line breaks

Roses are red, +
violets are blue.

[%hardbreaks]
A ruby is red.
Java is black.

▼ View result of Example 346

Roses are red,
violets are blue.

A ruby is red.
Java is black.

Example 347. Lead paragraph

[.lead]
This text will be styled as a lead paragraph (i.e., larger font).

This paragraph will not be.

▼ View result of Example 347

This text will be styled as a lead paragraph (i.e., larger font).

This paragraph will not be.


The default Asciidoctor stylesheet automatically styles the first paragraph of the
preamble as a lead paragraph if no role is specified on that paragraph.

Text formatting

Example 348. Constrained bold, italic, and monospace

It has *strong* significance to me.

I _cannot_ stress this enough.

Type `OK` to accept.

That *_really_* has to go.

Syntax Quick Reference | 407

Can't pick one? Let's use them `*_all_*`.

▼ View result of Example 348

It has strong significance to me.

I cannot stress this enough.

Type OK to accept.

That really has to go.

Can’t pick one? Let’s use them all.

Example 349. Unconstrained bold, italic, and monospace

Create, **R**ead, **U**pdate, and **D**elete (CRUD)

That's fan__freakin__tastic!

Don't pass generic ``Object``s to methods that accept ``String``s!

It was Beatle**__mania__**!

▼ View result of Example 349

Create, Read, Update, and Delete (CRUD)

That’s fanfreakintastic!

Don’t pass generic Objects to methods that accept Strings!

It was Beatlemania!

Example 350. Highlight, underline, strikethrough, and custom role

Mark my words, #automation is essential#.

##Mark##up refers to text that contains formatting ##mark##s.

Where did all the [.underline]#cores# go?

We need [.line-through]#ten# twenty VMs.

A [.myrole]#custom role# must be fulfilled by the theme.

▼ View result of Example 350

Mark my words, automation is essential .

Markup refers to text that contains formatting marks.

Where did all the cores go?

408 | Syntax Quick Reference

We need ten twenty VMs.

A custom role must be fulfilled by the theme.

Example 351. Superscript and subscript

^super^script

~sub~script

▼ View result of Example 351
superscript

subscript

Example 352. Smart quotes and apostrophes

"`double curved quotes`"

'`single curved quotes`'

Olaf's desk was a mess.

A ``std::vector```'s size is the number of items it contains.

All of the werewolves`' desks were a mess.

Olaf had been with the company since the `'00s.

▼ View result of Example 352

“double curved quotes”

‘single curved quotes’

Olaf’s desk was a mess.

A std::vector’s size is the number of items it contains.

All of the werewolves’ desks were a mess.

Olaf had been with the company since the ’00s.

Links

Example 353. Autolinks, URL macro, and mailto macro

https://asciidoctor.org - automatic!

https://asciidoctor.org[Asciidoctor]

Syntax Quick Reference | 409

devel@discuss.example.org

mailto:devel@discuss.example.org[Discuss]

mailto:join@discuss.example.org[Subscribe,Subscribe me,I want to join!]

▼ View result of Example 353

asciidoctor.org - automatic!

Asciidoctor

devel@discuss.example.org

Discuss

Subscribe

Example 354. URL macros with attributes

https://chat.asciidoc.org[Discuss AsciiDoc,role=external,window=_blank]

https://chat.asciidoc.org[Discuss AsciiDoc^]

▼ View result of Example 354

Discuss AsciiDoc

Discuss AsciiDoc


The link: macro prefix is not required when the target starts with a URL scheme
like https:. The URL scheme acts as an implicit macro prefix.



If the link text contains a comma and the text is followed by one or more named
attributes, you must enclose the text in double quotes. Otherwise, the text will be
cut off at the comma (and the remaining text will get pulled into the attribute pars­
ing).

Example 355. URLs with spaces and special characters

link:++https://example.org/?q=[a b]++[URL with special characters]

https://example.org/?q=%5Ba%20b%5D[URL with special characters]

Example 356. Link to relative file

link:index.html[Docs]

410 | Syntax Quick Reference

https://asciidoctor.org
https://asciidoctor.org
mailto:devel@discuss.example.org
mailto:devel@discuss.example.org
mailto:join@discuss.example.org?subject=Subscribe%20me&body=I%20want%20to%20join%21
https://chat.asciidoc.org
https://chat.asciidoc.org

Example 357. Link using a Windows UNC path

link:\\server\share\whitepaper.pdf[Whitepaper]

Example 358. Inline anchors

[[bookmark-a]]Inline anchors make arbitrary content referenceable.

[#bookmark-b]#Inline anchors can be applied to a phrase like this one.#

anchor:bookmark-c[]Use a cross reference to link to this location.

[[bookmark-d,last paragraph]]The xreflabel attribute will be used as link text in the
cross-reference link.

Example 359. Cross references

See <<paragraphs>> to learn how to write paragraphs.

Learn how to organize the document into <<section-titles,sections>>.

▼ View result of Example 359

See Paragraphs to learn how to write paragraphs.

Learn how to organize the document into sections.

Example 360. Inter-document cross references

Refer to xref:document-b.adoc#section-b[Section B of Document B] for more information.

If you never return from xref:document-b.adoc[Document B], we'll send help.

Document header

The document header is optional. The header may not contain any empty lines and must be sepa­
rated from the content by at least one empty line.

Example 361. Title

= Document Title

This document provides...

Example 362. Title and author line

= Document Title
Author Name <author@email.org>

Syntax Quick Reference | 411

This document provides...

Example 363. Title, author line, and revision line

= Document Title
Author Name <author@email.org>; Another Author <a.author@email.org>
v2.0, 2019-03-22

This document provides...

 You cannot have a revision line without an author line.

Example 364. Document header with attribute entries

= Document Title
Author Name <author@email.org>
v2.0, 2019-03-22
:toc:
:homepage: https://example.org

This document provides...

Section titles

When the document type is article (the default), the document can only have one level 0 section
title (=), which is the document title (i.e., doctitle).

Example 365. Article section levels

= Document Title (Level 0)

== Level 1 Section Title

=== Level 2 Section Title

==== Level 3 Section Title

===== Level 4 Section Title

====== Level 5 Section Title

== Another Level 1 Section Title

▼ View result of Example 365

412 | Syntax Quick Reference

Document Title (Level 0)

Level 1 Section Title

Level 2 Section Title

Level 3 Section Title

Level 4 Section Title

Level 5 Section Title

Another Level 1 Section Title

The book document type can have additional level 0 section titles, which are interpreted as parts.
The presence of at least one part implicitly makes the document a multi-part book.

Example 366. Book section levels

= Document Title (Level 0)

== Level 1 Section Title

= Level 0 Section Title (Part)

== Level 1 Section Title

=== Level 2 Section Title

==== Level 3 Section Title

===== Level 4 Section Title

====== Level 5 Section Title

= Another Level 0 Section Title (Part)

Example 367. Discrete heading (not a section)

[discrete]
=== I'm an independent heading!

This paragraph is its sibling, not its child.

▼ View result of Example 367

Syntax Quick Reference | 413

I’m an independent heading!
This paragraph is its sibling, not its child.

Automatic TOC

Example 368. Activate Table of Contents for a document

= Document Title
Doc Writer <doc.writer@email.org>
:toc:

The Table of Contents’ title, displayed section depth, and position can be customized.

Includes

Example 369. Include document parts

= Reference Documentation
Lead Developer

This is documentation for project X.

include::basics.adoc[]

include::installation.adoc[]

include::example.adoc[]

Example 370. Include content by tagged regions or lines

include::filename.txt[tag=definition]

include::filename.txt[lines=5..10]

Example 371. Include content from a URL

include::https://raw.githubusercontent.com/asciidoctor/asciidoctor/main/README.adoc[]



Including content from a URL is potentially dangerous, so it’s disabled if the safe
mode is SECURE or greater. Assuming the safe mode is less than SECURE, you must
also set the allow-uri-read attribute to permit the AsciiDoc processor to read con­
tent from a URL.

Lists

414 | Syntax Quick Reference

Example 372. Unordered list

* List item
** Nested list item
*** Deeper nested list item
* List item
 ** Another nested list item
* List item

▼ View result of Example 372

• List item

◦ Nested list item

▪ Deeper nested list item

• List item

◦ Another nested list item

• List item



An empty line is required before and after a list to separate it from other blocks.
You can force two adjacent lists apart by adding an empty attribute list (i.e., [])
above the second list or by inserting an empty line followed by a line comment
after the first list. If you use a line comment, the convention is to use //- to provide
a hint to other authors that it’s serving as a list divider.

Example 373. Unordered list max level nesting

* Level 1 list item
** Level 2 list item
*** Level 3 list item
**** Level 4 list item
***** Level 5 list item
****** etc.
* Level 1 list item

▼ View result of Example 373

• Level 1 list item

◦ Level 2 list item

▪ Level 3 list item

▪ Level 4 list item

▪ Level 5 list item

▪ etc.

• Level 1 list item

The unordered list marker can be changed using a list style (e.g., square).

Syntax Quick Reference | 415

Example 374. Ordered list

. Step 1

. Step 2

.. Step 2a

.. Step 2b

. Step 3

▼ View result of Example 374

1. Step 1

2. Step 2

a. Step 2a

b. Step 2b

3. Step 3

Example 375. Ordered list max level nesting

. Level 1 list item

.. Level 2 list item

... Level 3 list item

.... Level 4 list item

..... Level 5 list item

. Level 1 list item

▼ View result of Example 375

1. Level 1 list item

a. Level 2 list item

i. Level 3 list item

A. Level 4 list item

I. Level 5 list item

2. Level 1 list item

Ordered lists support numeration styles such as lowergreek and decimal-leading-zero.

Example 376. Checklist

* [*] checked
* [x] also checked
* [] not checked
* normal list item

▼ View result of Example 376

☑ checked

☑ also checked

416 | Syntax Quick Reference

☐ not checked

normal list item

Example 377. Description list

First term:: The description can be placed on the same line
as the term.
Second term::
Description of the second term.
The description can also start on its own line.

▼ View result of Example 377

First term

The description can be placed on the same line as the term.

Second term

Description of the second term. The description can also start on its own line.

Example 378. Question and answer list

[qanda]
What is the answer?::
This is the answer.

Are cameras allowed?::
Are backpacks allowed?::
No.

▼ View result of Example 378

1. What is the answer?

This is the answer.

2. Are cameras allowed?

Are backpacks allowed?

No.

Example 379. Mixed

Operating Systems::
 Linux:::
 . Fedora
 * Desktop
 . Ubuntu
 * Desktop
 * Server
 BSD:::
 . FreeBSD
 . NetBSD

Syntax Quick Reference | 417

Cloud Providers::
 PaaS:::
 . OpenShift
 . CloudBees
 IaaS:::
 . Amazon EC2
 . Rackspace

▼ View result of Example 379

Operating Systems

Linux

1. Fedora

◦ Desktop

2. Ubuntu

◦ Desktop

◦ Server

BSD

1. FreeBSD

2. NetBSD

Cloud Providers

PaaS

1. OpenShift

2. CloudBees

IaaS

1. Amazon EC2

2. Rackspace

 Lists can be indented. Leading whitespace is not significant.

Example 380. Complex content in outline lists

* Every list item has at least one paragraph of content,
 which may be wrapped, even using a hanging indent.
+
Additional paragraphs or blocks are adjoined by putting
a list continuation on a line adjacent to both blocks.
+
list continuation:: a plus sign (`{plus}`) on a line by itself

* A literal paragraph does not require a list continuation.

 $ cd projects/my-book

418 | Syntax Quick Reference

* AsciiDoc lists may contain any compound content.
+
|===
|Column 1, Header Row |Column 2, Header Row

|Column 1, Row 1
|Column 2, Row 1
|===

▼ View result of Example 380

• Every list item has at least one paragraph of content, which may be wrapped, even using a
hanging indent.

Additional paragraphs or blocks are adjoined by putting a list continuation on a line adjacent
to both blocks.

list continuation

a plus sign (+) on a line by itself

• A literal paragraph does not require a list continuation.

$ cd projects/my-book

• AsciiDoc lists may contain any compound content.

Column 1, Header Row Column 2, Header Row

Column 1, Row 1 Column 2, Row 1

Images

You can use the imagesdir attribute to avoid hard coding the common path to your images in every
image macro. The value of this attribute can be an absolute path, relative path, or base URL. If the
image target is a relative path, the attribute’s value is prepended (i.e., it’s resolved relative to the
value of the imagesdir attribute). If the image target is a URL or absolute path, the attribute’s value
is not prepended.

Example 381. Block image macro

image::sunset.jpg[]

image::sunset.jpg[Sunset]

.A mountain sunset
[#img-sunset,caption="Figure 1: ",link=https://www.flickr.com/photos/javh/5448336655]
image::macros:sunset.jpg[Sunset,200,100]

Syntax Quick Reference | 419

image::https://asciidoctor.org/images/octocat.jpg[GitHub mascot]

▼ View result of Example 381

Figure 1: A mountain sunset

420 | Syntax Quick Reference

https://www.flickr.com/photos/javh/5448336655

Two colons following the image keyword in the macro (i.e., image::) indicates a block image (aka
figure), whereas one colon following the image keyword (i.e., image:) indicates an inline image. (All
macros follow this pattern). You use an inline image when you need to place the image in a line of
text. Otherwise, you should prefer the block form.

Example 382. Inline image macro

Click image:play.png[] to get the party started.

Click image:pause.png[title=Pause] when you need a break.

▼ View result of Example 382

Click to get the party started.

Click when you need a break.

Example 383. Inline image macro with positioning role

image:sunset.jpg[Sunset,150,150,role=right] What a beautiful sunset!

▼ View result of Example 383

 What a beautiful sunset!

Example 384. Embedded

= Document Title
:data-uri:

When the data-uri attribute is set, all images in the document—including admonition icons—are
embedded into the document as data URIs. You can also pass it as a command line argument using
-a data-uri.

Audio

Example 385. Block audio macro

audio::ocean-waves.wav[]

audio::ocean-waves.wav[start=60,opts=autoplay]

You can control the audio settings using additional attributes and options on the macro.

Syntax Quick Reference | 421

https://developer.mozilla.org/en-US/docs/data_URIs

Videos

Example 386. Block video macro

video::video-file.mp4[]

video::video-file.mp4[width=640,start=60,opts=autoplay]

Example 387. Embedded YouTube video

video::RvRhUHTV_8k[youtube]

Example 388. Embedded Vimeo video

video::67480300[vimeo]

You can control the video settings using additional attributes and options on the macro.

Keyboard, button, and menu macros


You must set the experimental attribute in the document header to enable these
macros.

Example 389. Keyboard macro

|===
|Shortcut |Purpose

|kbd:[F11]
|Toggle fullscreen

|kbd:[Ctrl+T]
|Open a new tab
|===

▼ View result of Example 389

Shortcut Purpose

F11 Toggle fullscreen

Ctrl  +  T Open a new tab

Example 390. Menu macro

To save the file, select menu:File[Save].

Select menu:View[Zoom > Reset] to reset the zoom level to the default setting.

422 | Syntax Quick Reference

▼ View result of Example 390

To save the file, select File › Save.

Select View › Zoom › Reset to reset the zoom level to the default setting.

Example 391. Button macro

Press the btn:[OK] button when you are finished.

Select a file in the file navigator and click btn:[Open].

▼ View result of Example 391

Press the [ OK ] button when you are finished.

Select a file in the file navigator and click [ Open ].

Literals and source code

Example 392. Inline literal monospace

Output literal monospace text, such as `+{backtick}+` or `+http://localhost:8080+`, by
enclosing the text in a pair of pluses surrounded by a pair of backticks.

▼ View result of Example 392

Output literal monospace text, such as {backtick} or http://localhost:8080, by enclosing the text
in a pair of pluses surrounded by a pair of backticks.

Example 393. Literal paragraph

Normal line.

 Indent line by one space to create a literal line.

Normal line.

▼ View result of Example 393

Normal line.

Indent line by one space to create a literal line.

Normal line.

Example 394. Literal block

....
error: 1954 Forbidden search
absolutely fatal: operation lost in the dodecahedron of doom

Syntax Quick Reference | 423

Would you like to try again? y/n
....

▼ View result of Example 394

error: 1954 Forbidden search
absolutely fatal: operation lost in the dodecahedron of doom

Would you like to try again? y/n

Example 395. Listing block with title

.Gemfile.lock

GEM
 remote: https://rubygems.org/
 specs:
 asciidoctor (2.0.15)

PLATFORMS
 ruby

DEPENDENCIES
 asciidoctor (~> 2.0.15)

▼ View result of Example 395

Listing 1. Gemfile.lock

GEM
 remote: https://rubygems.org/
 specs:
 asciidoctor (2.0.15)

PLATFORMS
 ruby

DEPENDENCIES
 asciidoctor (~> 2.0.15)

Example 396. Source block with title and syntax highlighting

.Some Ruby code
[source,ruby]

require 'sinatra'

424 | Syntax Quick Reference

get '/hi' do
 "Hello World!"
end

▼ View result of Example 396

Listing 1. Some Ruby code

require 'sinatra'

get '/hi' do
 "Hello World!"
end



You must enable source highlighting by setting the source-highlighter attribute in
the document header, CLI, or API.

:source-highlighter: rouge

See Syntax Highlighting to learn which values are accepted when using Asciidoc­
tor.

Example 397. Source block with callouts

[source,ruby]

require 'sinatra' // <1>

get '/hi' do // <2>
 "Hello World!" // <3>
end

<1> Library import
<2> URL mapping
<3> HTTP response body

▼ View result of Example 397

require 'sinatra' ①

get '/hi' do ②
 "Hello World!" ③
end

① Library import

② URL mapping

Syntax Quick Reference | 425

https://docs.asciidoctor.org/asciidoctor/latest/syntax-highlighting/

③ HTTP response body

Example 398. Make callouts non-selectable

line of code // <1>
line of code # <2>
line of code ;; <3>
line of code <!--4-->

<1> A callout behind a line comment for C-style languages.
<2> A callout behind a line comment for Ruby, Python, Perl, etc.
<3> A callout behind a line comment for Clojure.
<4> A callout behind a line comment for XML or SGML languages like HTML.

▼ View result of Example 398

line of code ①
line of code ②
line of code ③
line of code ④

① A callout behind a line comment for C-style languages.

② A callout behind a line comment for Ruby, Python, Perl, etc.

③ A callout behind a line comment for Clojure.

④ A callout behind a line comment for XML or SGML languages like HTML.

Example 399. Source block content included from a file

[,ruby]

include::app.rb[]

Example 400. Source block content included from file relative to source directory

:sourcedir: src/main/java

[source,java]

include::{sourcedir}/org/asciidoctor/Asciidoctor.java[]

Example 401. Strip leading indentation from partial file content

[source,ruby]

include::lib/app.rb[tag=main,indent=0]

426 | Syntax Quick Reference



The indent attribute is frequently used when including source code by tagged
region or lines. It can be specified on the include directive itself or the enclosing
literal, listing, or source block.

When indent is 0, the leading block indent is stripped.

When indent is greater than 0, the leading block indent is first stripped, then a
block is indented by the number of columns equal to this value.

Example 402. Source paragraph (no empty lines)

[source,xml]
<meta name="viewport"
 content="width=device-width, initial-scale=1.0">

This is normal content.

▼ View result of Example 402

<meta name="viewport"
 content="width=device-width, initial-scale=1.0">

This is normal content.

Admonitions

Example 403. Admonition paragraph

NOTE: An admonition draws the reader's attention to auxiliary information.

Here are the other built-in admonition types:

IMPORTANT: Don't forget the children!

TIP: Look for the warp zone under the bridge.

CAUTION: Slippery when wet.

WARNING: The software you're about to use is untested.

IMPORTANT: Sign off before stepping away from your computer.

▼ View result of Example 403

 An admonition draws the reader’s attention to auxiliary information.

Syntax Quick Reference | 427

Here are the other built-in admonition types:

 Don’t forget the children!

 Look for the warp zone under the bridge.

 Slippery when wet.

 The software you’re about to use is untested.

 Sign off before stepping away from your computer.

Example 404. Admonition block

[NOTE]
====
An admonition block may contain compound content.

.A list
- one
- two
- three

Another paragraph.
====

▼ View result of Example 404



An admonition block may contain compound content.

A list

• one

• two

• three

Another paragraph.

More delimited blocks

Any block can have a title. A block title is defined using a line of text above the block that starts
with a dot. That dot cannot be followed by a space. For block images, the title is displayed below the
block. For all other blocks, the title is typically displayed above it.

Example 405. Sidebar block

.Optional Title

428 | Syntax Quick Reference

Sidebars are used to visually separate auxiliary bits of content
that supplement the main text.

▼ View result of Example 405

Optional Title

Sidebars are used to visually separate auxiliary bits of content that supplement the main
text.

Example 406. Example block

====
Here's a sample AsciiDoc document:

= Title of Document
Doc Writer
:toc:

This guide provides...

The document header is useful, but not required.
====

▼ View result of Example 406

Here’s a sample AsciiDoc document:

= Title of Document
Doc Writer
:toc:

This guide provides...

The document header is useful, but not required.

Example 407. Blockquotes

[quote,Abraham Lincoln,Address delivered at the dedication of the Cemetery at
Gettysburg]

Four score and seven years ago our fathers brought forth
on this continent a new nation...

Syntax Quick Reference | 429

[quote,Albert Einstein]
A person who never made a mistake never tried anything new.

A person who never made a mistake never tried anything new.

[quote,Charles Lutwidge Dodgson,'Mathematician and author, also known as
https://en.wikipedia.org/wiki/Lewis_Carroll[Lewis Carroll]']

If you don't know where you are going, any road will get you there.

"I hold it that a little rebellion now and then is a good thing,
and as necessary in the political world as storms in the physical."
-- Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

▼ View result of Example 407

Four score and seven years ago our fathers brought forth on this conti­
nent a new nation…

— Abraham Lincoln, Address delivered at the dedication of the Cemetery at Gettysburg

A person who never made a mistake never tried anything new.

— Albert Einstein

A person who never made a mistake never tried anything new.

If you don’t know where you are going, any road will get you there.

— Charles Lutwidge Dodgson, Mathematician and author, also known as Lewis Carroll

I hold it that a little rebellion now and then is a good thing, and as neces­
sary in the political world as storms in the physical.

— Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

Example 408. Open blocks

--
An open block can be an anonymous container,
or it can masquerade as any other block.
--

[source]
--

430 | Syntax Quick Reference

https://en.wikipedia.org/wiki/Lewis_Carroll

puts "I'm a source block!"
--

▼ View result of Example 408

An open block can be an anonymous container, or it can masquerade as any other block.

puts "I'm a source block!"

Example 409. Passthrough block

++++
<p>
Content in a passthrough block is passed to the output unprocessed.
That means you can include raw HTML, like this embedded Gist:
</p>

<script src="https://gist.github.com/mojavelinux/5333524.js">
</script>
++++

▼ View result of Example 409

<p>
Content in a passthrough block is passed to the output unprocessed.
That means you can include raw HTML, like this embedded Gist:
</p>

<script src="https://gist.github.com/mojavelinux/5333524.js">
</script>

Example 410. Customize block substitutions

:release-version: 2.4.3

[source,xml,subs=attributes+]

<dependency>
 <groupId>org.asciidoctor</groupId>
 <artifactId>asciidoctorj</artifactId>
 <version>{release-version}</version>
</dependency>

▼ View result of Example 410

<dependency>
 <groupId>org.asciidoctor</groupId>
 <artifactId>asciidoctorj</artifactId>
 <version>2.4.3</version>

Syntax Quick Reference | 431

</dependency>

Tables

Example 411. Table with a title, two columns, a header row, and two rows of content

.Table Title
|===
|Column 1, Header Row |Column 2, Header Row ①
②
|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

① Unless the cols attribute is specified, the number of columns is equal to the number of cell sepa­
rators on the first (non-empty) line.

② When an empty line immediately follows a non-empty line at the start of the table, the cells in
the first line get promoted to the table header.

▼ View result of Example 411

Table 1. Table Title

Column 1, Header Row Column 2, Header Row

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Example 412. Table with two columns, a header row, and two rows of content

[%header,cols=2*] ①
|===
|Name of Column 1
|Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

① The * in the cols attribute is the repeat operator. It means repeat the column specification across
the remaining columns. In this case, we are repeating the default formatting across 2 columns.
When the cells in the header are not defined on a single line, you must use the cols attribute to
set the number of columns in the table and the %header option (or options=header attribute) to
promote the first row to the table header.

432 | Syntax Quick Reference

▼ View result of Example 412

Name of Column 1 Name of Column 2

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Example 413. Table with three columns, a header row, and two rows of content

.Applications
[cols="1,1,2"] ①
|===
|Name |Category |Description

|Firefox
|Browser
|Mozilla Firefox is an open source web browser.
It's designed for standards compliance,
performance, portability.

|Arquillian
|Testing
|An innovative and highly extensible testing platform.
Empowers developers to easily create real, automated tests.
|===

① In this example, the cols attribute has two functions. It specifies that this table has three
columns, and it sets their relative widths.

▼ View result of Example 413

Table 1. Applications

Name Category Description

Firefox Browser Mozilla Firefox is an open source web browser.
It’s designed for standards compliance, perfor­
mance, portability.

Arquillian Testing An innovative and highly extensible testing
platform. Empowers developers to easily create
real, automated tests.

Example 414. Table with column containing AsciiDoc content

[cols="2,2,5a"]
|===
|Firefox
|Browser
|Mozilla Firefox is an open source web browser.

It's designed for:

Syntax Quick Reference | 433

* standards compliance
* performance
* portability

https://getfirefox.com[Get Firefox]!
|===

▼ View result of Example 414

Firefox Browser Mozilla Firefox is an open source web browser.

It’s designed for:

• standards compliance

• performance

• portability

Get Firefox!

Example 415. Table from CSV data using shorthand

,===
Artist,Track,Genre

Baauer,Harlem Shake,Hip Hop
,===

▼ View result of Example 415

Artist Track Genre

Baauer Harlem Shake Hip Hop

Example 416. Table from CSV data

[%header,format=csv]
|===
Artist,Track,Genre
Baauer,Harlem Shake,Hip Hop
The Lumineers,Ho Hey,Folk Rock
|===

▼ View result of Example 416

Artist Track Genre

Baauer Harlem Shake Hip Hop

The Lumineers Ho Hey Folk Rock

434 | Syntax Quick Reference

https://getfirefox.com

Example 417. Table from CSV data included from file

,===
include::customers.csv[]
,===

Example 418. Table from DSV data using shorthand

:===
Artist:Track:Genre

Robyn:Indestructible:Dance
:===

▼ View result of Example 418

Artist Track Genre

Robyn Indestructible Dance

Example 419. Table with formatted, aligned and merged cells

[cols="e,m,^,>s",width="25%"]
|===
|1 >s|2 |3 |4
^|5 2.2+^.^|6 .3+<.>m|7
^|8
|9 2+>|10
|===

▼ View result of Example 419

1 2 3 4

5
6

7

8

9 10

IDs, roles, and options

Example 420. Shorthand method for assigning block ID (anchor) and role

[#goals.incremental]
* Goal 1
* Goal 2


• To specify multiple roles using the shorthand syntax, delimit them by dots.

• The order of id and role values in the shorthand syntax does not matter.

Syntax Quick Reference | 435

Example 421. Formal method for assigning block ID (anchor) and role

[id="goals",role="incremental"]
* Goal 1
* Goal 2

Example 422. Explicit section ID (anchor)

[#null-values]
== Primitive types and null values

Example 423. Assign ID (anchor) and role to inline formatted text

[#id-name.role-name]`monospace text`

[#free-world.goals]*free the world*

Example 424. Shorthand method for assigning block options

[%header%footer%autowidth]
|===
|Header A |Header B
|Footer A |Footer B
|===

Example 425. Formal method for assigning block options

[options="header,footer,autowidth"]
|===
|Header A |Header B
|Footer A |Footer B
|===

// options can be shorted to opts
[opts="header,footer,autowidth"]
|===
|Header A |Header B
|Footer A |Footer B
|===

Comments

Example 426. Line and block comments

// A single-line comment

////
A multi-line comment.

436 | Syntax Quick Reference

Notice it's a delimited block.
////

Breaks

Example 427. Thematic break (aka horizontal rule)

before

'''

after

▼ View result of Example 427

before

after

Example 428. Page break

<<<

Attributes and substitutions

Example 429. Attribute declaration and usage

:url-home: https://asciidoctor.org
:link-docs: https://asciidoctor.org/docs[documentation]
:summary: AsciiDoc is a mature, plain-text document format for \
 writing notes, articles, documentation, books, and more. \
 It's also a text processor & toolchain for translating \
 documents into various output formats (i.e., backends), \
 including HTML, DocBook, PDF and ePub.
:checkedbox: pass:normal[{startsb}✔{endsb}]

Check out {url-home}[Asciidoctor]!

{summary}

Be sure to read the {link-docs} too!

{checkedbox} That's done!

▼ View result of Example 429

Syntax Quick Reference | 437

Check out Asciidoctor!

AsciiDoc is a mature, plain-text document format for writing notes, articles, documentation,
books, and more. It’s also a text processor & toolchain for translating documents into various
output formats (i.e., backends), including HTML, DocBook, PDF and ePub.

Be sure to read the documentation too!

[✔] That’s done!

To learn more about the available attributes and substitution groups see:

• Document Attributes Reference

• Character Replacement Attributes Reference

• Substitution Groups

Example 430. Counter attributes

.Parts{counter2:index:0}
|===
|Part Id |Description

|PX-{counter:index}
|Description of PX-{index}

|PX-{counter:index}
|Description of PX-{index}
|===

▼ View result of Example 430

Table 1. Parts

Part Id Description

PX-3 Description of PX-3

PX-4 Description of PX-4

Text replacements

Textual symbol replacements

Name Syn­
tax

Unicode
Replacement

Ren­
dered

Notes

Copyright (C) © ©

Registered (R) ® ®

Trademark (TM) ™ ™

438 | Syntax Quick Reference

https://asciidoctor.org
https://asciidoctor.org/docs

Name Syn­
tax

Unicode
Replacement

Ren­
dered

Notes

Em dash -- —  —  Only replaced if between two word characters,
between a word character and a line boundary, or
flanked by spaces.

When flanked by space characters (e.g., a -- b), the
normal spaces are replaced by thin spaces ( ).
Otherwise, the em dash is followed by a zero-width
space (​) to provide a break opportunity.

Ellipsis ... … … The ellipsis is followed by a zero-width space
(​) to provide a break opportunity.

Single right
arrow

-> → →

Double right
arrow

=> ⇒ ⇒

Single left
arrow

<- ← ←

Double left
arrow

<= ⇐ ⇐

Typographic
apostrophe

Sam'
s

Sam’s Sam’s The typewriter apostrophe is replaced with the typo­
graphic (aka curly or smart) apostrophe.

Any named, numeric or hexadecimal XML character reference is supported.

Escaping substitutions

Example 431. Backslash

In /items/\{id}, the id attribute isn't replaced.
The curly braces around it are preserved.

Stars isn't displayed as bold text.
The asterisks around it are preserved.

\§ appears as an entity reference.
It's not converted into the section symbol (§).

\=> The backslash prevents the equals sign followed by a greater
than sign from combining to form a double arrow character (=>).

\[[Word]] is not interpreted as an anchor.
The double brackets around it are preserved.

[\[[Word]]] is not interpreted as a bibliography anchor.
The triple brackets around it are preserved.

Syntax Quick Reference | 439

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references

\((DD AND CC) OR (DD AND EE)) is not interpreted as a flow index term.
The double brackets around it are preserved.

The URL \https://example.org isn't converted into an active link.

▼ View result of Example 431

In /items/{id}, the id attribute isn’t replaced. The curly braces around it are preserved.

Stars isn’t displayed as bold text. The asterisks around it are preserved.

§ appears as an entity reference. It’s not converted into the section symbol (§).

=> The backslash prevents the equals sign followed by a greater than sign from combining to
form a double arrow character (⇒).

[[syntax-quick-reference:::Word]] is not interpreted as an anchor. The double brackets around it
are preserved.

[[[syntax-quick-reference:::Word]]] is not interpreted as a bibliography anchor. The triple brack­
ets around it are preserved.

((DD AND CC) OR (DD AND EE)) is not interpreted as a flow index term. The double brackets
around it are preserved.

The URL https://example.org isn’t converted into an active link.

Example 432. Single and double plus inline passthroughs

A word or phrase between single pluses, such as +/user/{id}+,
is not substituted.
However, the special characters like +<+ and +>+ are still
escaped in the output.

An attribute reference within a word, such as dev++{conf}++,
is not replaced.

A plus passthrough will escape standalone formatting marks,
like +``+, or formatting marks within a word, like all-natural++*++.

▼ View result of Example 432

A word or phrase between single pluses, such as /user/{id}, is not substituted. However, the spe­
cial characters like < and > are still escaped in the output.

An attribute reference within a word, such as dev{conf}, is not replaced.

A plus passthrough will escape standalone formatting marks, like ``, or formatting marks within
a word, like all-natural*.

440 | Syntax Quick Reference

Example 433. Triple plus inline passthrough and inline pass macro

+++strike this+++ is marked as deleted.

pass:[strike this] is also marked as deleted.

▼ View result of Example 433

strike this is marked as deleted.

strike this is also marked as deleted.

Bibliography

Example 434. Bibliography with inbound references

The Pragmatic Programmer <<pp>> should be required reading for all developers.
To learn all about design patterns, refer to the book by the "`Gang of Four`" <<gof>>.

[bibliography]
== References

* [[[pp]]] Andy Hunt & Dave Thomas. The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley. 1999.
* [[[gof,gang]]] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. 1994.

▼ View result of Example 434

The Pragmatic Programmer [syntax-quick-reference:::pp] should be required reading for all
developers. To learn all about design patterns, refer to the book by the “Gang of Four” [gang].

References
▪ [syntax-quick-reference:::pp] Andy Hunt & Dave Thomas. The Pragmatic Programmer: From

Journeyman to Master. Addison-Wesley. 1999.

▪ [gang] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides. Design Patterns: Ele­
ments of Reusable Object-Oriented Software. Addison-Wesley. 1994.

Footnotes

Example 435. Normal and reusable footnotes

A statement.footnote:[Clarification about this statement.]

A bold statement!footnote:disclaimer[Opinions are my own.]

Another bold statement.footnote:disclaimer[]

Syntax Quick Reference | 441

▼ View result of Example 435

A statement.[1]

A bold statement![2 - Footnotes]

Another bold statement.[2 - Footnotes]

Markdown compatibility

Markdown compatible syntax is an optional feature of the AsciiDoc language and is currently only
available when using Asciidoctor.

Example 436. Markdown-style headings

Document Title (Level 0)

Section Level 1

Section Level 2

Section Level 3

Section Level 4

Section Level 5

▼ View result of Example 436

Document Title (Level 0)

Section Level 1

Section Level 2

Section Level 3

Section Level 4

Section Level 5

Example 437. Fenced code block with syntax highlighting

```ruby
require 'sinatra'

get '/hi' do

442 | Syntax Quick Reference



  "Hello World!"
end
```

▼ View result of Example 437

require 'sinatra'

get '/hi' do
 "Hello World!"
end

Example 438. Markdown-style blockquote

> I hold it that a little rebellion now and then is a good thing,
> and as necessary in the political world as storms in the physical.
> -- Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

▼ View result of Example 438

I hold it that a little rebellion now and then is a good thing, and as neces­
sary in the political world as storms in the physical.

— Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

Example 439. Markdown-style blockquote with block content

> > What's new?
>
> I've got Markdown in my AsciiDoc!
>
> > Like what?
>
> * Blockquotes
> * Headings
> * Fenced code blocks
>
> > Is there more?
>
> Yep. AsciiDoc and Markdown share a lot of common syntax already.

▼ View result of Example 439

What’s new?

I’ve got Markdown in my AsciiDoc!

Like what?

Syntax Quick Reference | 443

• Blockquotes

• Headings

• Fenced code blocks

Is there more?

Yep. AsciiDoc and Markdown share a lot of common syntax already.

Example 440. Markdown-style thematic breaks

- - -

* * *

▼ View result of Example 440

Frequently Asked Questions (FAQ)

Does AsciiDoc only support ASCII text?

No. AsciiDoc provides full Unicode support (UTF-8 by default, UTF-16 with a BOM). ὄ�

The “Ascii” in AsciiDoc (and Asciidoctor) merely refers to the range of characters used to define the
language syntax (e.g., block delimiters, section markers, list markers, attribute list boundaries,
built-in attribute and block names, etc.). In other words, you only have to use characters from US-
ASCII in order to express the structure of an AsciiDoc document. The content itself, which includes
paragraphs, titles, verbatim blocks, attribute names and values, custom block names, and so forth,
may contain characters from any character range in Unicode.

An AsciiDoc processor assumes the input is encoded in UTF-8 and it encodes output documents in
UTF-8 as well. The include directive allows the encoding to be specified if the include file is not
encoded in UTF-8.

What’s the relationship between a converter and a backend?

A converter is the software that performs conversion from AsciiDoc to a publishable format. A
backend is an identifier for the intended output format, and thus tells the AsciiDoc processor

444 | Frequently Asked Questions (FAQ)

which converter to use. You can think of the backend as an alias for a converter.

The backend represents the user’s intent to transform the AsciiDoc document to a given format
(e.g., html5 for HTML 5). That backend also serves as an identifier that tells the processor which con­
verter to use. More than one converter can bind to (i.e., stake claim to) the same backend in order
to provide the user with alternatives for generating a given output format. For example, the back­
end pdf could be satisfied by Asciidoctor PDF, but it may also be mapped to a different implementa­
tion. The last converter that registers itself with a backend wins.

What’s the media type (aka MIME type) for AsciiDoc?

A media type, or MIME type, is a code for identifying file formats and content formats transmitted
over the Internet. As of yet, there’s no official media type registered for AsciiDoc. However, the
AsciiDoc Working Group, which oversees the specification for the AsciiDoc language, has plans to
submit a proposal to register an official the media type for AsciiDoc. See asciidoctor#2502.

The proposed media type for AsciiDoc is as follows:

name: text/asciidoc
extensions: .adoc, .asciidoc

The name text/asciidoc follows the convention used for Markdown. The .adoc extension is the pre­
ferred one. The .asciidoc extension is only included for backwards compatibility with existing doc­
uments.

See tools.ietf.org/html/rfc7763 for details about naming a media type.

Why is my document attribute being ignored?

If the document attribute is a header-only attribute, make sure it is defined in the document header
or passed in via a CLI or API. Otherwise, the document attribute will not have any affect.

Recall that the document header ends at the first empty line or block, whichever comes first. If you
have an empty line somewhere in what you intend to be the document header, the attribute entries
that fall after that empty line are going to be defined in the body, not the header. That likely
explains your problem. If you remove the empty line(s), your attribute should be recognized.

If the document attribute is not a header-only attribute, make sure it is being defined (using an
attribute entry) outside of any delimited block and offset from other blocks by at least one empty
line.

Part way through the document, the blocks stop rendering correctly. What
went wrong?

When content does not display as you expect in the later part of a document, it’s usually due to a
delimited block missing its closing delimiter line. The parsing rules inside a delimited block are dif­
ferent. If left open, it can impact how the AsciiDoc processor interprets the document structure. For
example, the AsciiDoc processor will stop recognizing section titles from that point forward.

Frequently Asked Questions (FAQ) | 445

https://en.wikipedia.org/wiki/Media_type
https://github.com/asciidoctor/asciidoctor/issues/2502
https://tools.ietf.org/html/rfc7763

To solve this problem, first look for missing delimiter lines. An AsciiDoc processor must warn you
when this situation is detected. Syntax highlighting in your text editor can also help with this. Also
look at the rendered output to see if the block styles are extending past where you intended.

The most sly culprit is the open block. Although an open block doesn’t have any special styling, it
does apply delimited block semantics to its contents. You can add a role that applies a custom style,
such as a red outline, so you can see its boundaries.

Why don’t links to URLs that contain an underscore or caret work?

An AsciiDoc processor applies normal substitutions to paragraph content, including the target of a
URL or link macro. It’s up to the author to escape this syntax. See Troubleshooting Complex URLs to
find techniques you can use to address this problem.

Compare AsciiDoc to Markdown
The most compelling reason to choose a lightweight markup language for writing is to minimize the
number of technical concepts an author must grasp in order to be immediately productive. In other
words, the goal is to be able to write without friction. While that’s certainly the goal of both AsciiDoc
and Markdown, and both are very approachable for newcomers, this page explores why AsciiDoc is
a more suitable alternative to Markdown as your content grows and evolves.

Starting with Markdown

The most prevalent lightweight markup language is Markdown. (At least, Markdown is what you
call it at first). The main advantage of Markdown lies in its primitive syntax: its manual and cheat­
sheet are one and the same. But this advantage is also its greatest weakness.

As soon as authors need something slightly more complex than basic prose (e.g., tables, cross refer­
ences, footnotes, embedded YouTube videos, etc.), they find themselves resorting to embedded
HTML or seeking out more feature-rich implementations. Markdown has become a maze of differ­
ent implementations, termed “flavors”, which make a universal definition evasive.


The IETF has declared “there is no such thing as "invalid" Markdown.” See This Is
Markdown! Or: Markup and Its Discontents.

Here’s how the story inevitably goes. You start out with Markdown. Then it’s Markdown + X. Then
Markdown + X + Y. And down the rabbit hole you go. What’s worse, X and Y often require you to
sprinkle in HTML, unnecessarily coupling content with presentation and wrecking portability. Your
instinct to choose Markdown is good. There are just better options.

Graduating to AsciiDoc

AsciiDoc presents a more sound alternative. The AsciiDoc syntax is more concise than (or at least as
concise as) Markdown. At the same time, AsciiDoc offers power and flexibility without requiring
the use of HTML or “flavors” for essential syntax such as tables, description lists, admonitions (tips,
notes, warnings, etc.) and table of contents.

446 | Compare AsciiDoc to Markdown

https://tools.ietf.org/html/rfc7763#section-1.1
https://tools.ietf.org/html/rfc7763#section-1.1

It’s important to understand that AsciiDoc was initially designed as a plain-text alternative to the
DocBook XML schema. AsciiDoc isn’t stuck in a game of whack-a-mole trying to satisfy publishing
needs like Markdown. Rather, the AsciiDoc syntax was explicitly designed with the needs of pub­
lishing in mind, both print and web. If the need arises, you can make full use of the huge choice of
tools available for a DocBook workflow using Asciidoctor’s DocBook converter. That’s why mapping
to an enterprise documentation format like DocBook remains a key use case for AsciiDoc.

And yet, AsciiDoc is simple enough to stand in as a better flavor of Markdown. But what truly
makes AsciiDoc the right investment is that its syntax was designed to be extended as a core fea­
ture. This extensibility not only means that AsciiDoc has a lot more to offer, with room to grow, it
also fulfills the objective of ensuring your content is maximally reusable.

Comparison by example

The following table shows the AsciiDoc syntax as it compares to Markdown. Since AsciiDoc sup­
ports a broader range of syntax than Markdown, this side-by-side comparison focuses mainly on
areas where the syntax overlaps.

A selection of AsciiDoc language features compared to Markdown

Language Fea­
ture

Markdown AsciiDoc

Bold (con­
strained) **bold** *bold*

Bold (uncon­
strained) **b**old **b**old

Italic (con­
strained) *italic* _italic_

Italic (uncon­
strained)

n/a
__i__talic

Monospace (con­
strained) `monospace` `monospace`

Monospace
(unconstrained) `m`onospace ``m``onospace

Literal mono­
space `http://localhost:8080`

`/issue/{id}`
`+http://localhost:8080+`
`+/issue/{id}+`

Link with label
[Asciidoctor](https://asciidoct
or.org)

https://asciidoctor.org[Asciido
ctor]

Compare AsciiDoc to Markdown | 447

Language Fea­
ture

Markdown AsciiDoc

Relative link
[user guide](user-guide.html) link:user-guide.html[user

guide]
xref:user-guide.adoc[user
guide]

File link
[get the PDF]({% raw %}{{
site.url }}{% endraw
%}/assets/mydoc.pdf)

link:{site-
url}/assets/mydoc.pdf[get the
PDF]

Cross reference
See [Usage](#_usage).

<h2 id="_usage">Usage</h2>

See <<_usage>>.

== Usage

Block ID (aka
anchor) <h2 id="usage">Usage</h2> [#usage]

== Usage

Inline anchor n/a
. [[step-1]]Download the
software

Inline image w/
alt text ![Logo](/images/logo.png) image:logo.png[Logo]

Block image w/
alt text

n/a
image::logo.png[Logo]

Section heading*
Heading 2 == Heading 2

Blockquote*
> Quoted text.
>
> Another paragraph in quote.

Quoted text.

Another paragraph in quote.

448 | Compare AsciiDoc to Markdown

Language Fea­
ture

Markdown AsciiDoc

Literal block
 $ gem install asciidoctor

Example 441. Indented (by 1 or more
spaces)

 $ gem install asciidoctor

Example 442. Delimited

....
$ gem install asciidoctor
....

Code block*
```java
public class Person {
  private String name;
  public Person(String name) {
    this.name = name;
  }
}
```

[source,java]

public class Person {
 private String name;
 public Person(String name) {
 this.name = name;
 }
}

Unordered list
* apples
* orange
 * temple
 * navel
* bananas

* apples
* oranges
** temple
** navel
* bananas

Ordered list
1. first
2. second
3. third

. first

. second

. third

Thematic break
(aka horizontal
rule)*

* * *

- - -

_ _ _

'''

Compare AsciiDoc to Markdown | 449

Language Fea­
ture

Markdown AsciiDoc

Typographic
quotes (aka
“smart quotes”)

Enabled through an extension switch,
but offer little control in how they are
applied.

The `'90s popularized a new
form of music known as
"`grunge`" rock.
It'll turn out to have an
impact that extended well
beyond music.

Document
header

Example 443. Slapped on as “front mat­
ter”

layout: docs
title: Writing posts
prev_section: defining-
frontmatter
next_section: creating-pages
permalink: /docs/writing-posts/

Example 444. Native support!

= Writing posts
:page-layout: base
:showtitle:
:prev_section: defining-
frontmatter
:next_section: creating-pages

Admonitions n/a
TIP: You can add line numbers
to source listings by adding
the word `numbered` in the
attribute list after the
language name.

Sidebars n/a
.Lightweight Markup

Writing languages that let you
type less and express more.

Block titles n/a
.Grocery list
* Milk
* Eggs
* Bread

Includes n/a
include::intro.adoc[]

URI reference
Go to the [home page][home].

[home]: https://example.org

:home: https://example.org

Go to the {home}[home page].

450 | Compare AsciiDoc to Markdown

Language Fea­
ture

Markdown AsciiDoc

Custom CSS
classes

n/a
[.path]_Gemfile_

* Asciidoctor also supports the Markdown syntax for this language feature.

You can see that AsciiDoc has the following advantages over Markdown:

• AsciiDoc uses the same number of markup characters or less when compared to Markdown in
nearly all cases.

• AsciiDoc uses a consistent formatting scheme (i.e., it has consistent patterns).

• AsciiDoc can handle all permutations of nested inline (and block) formatting, whereas Mark­
down often falls down.

• AsciiDoc handles cases that Markdown doesn’t, such as a proper approach to inner-word
markup, source code blocks and block-level images.



Certain Markdown flavors, such as Markdown Extra, support additional features
such as tables and description lists. However, since these features don’t appear in
“plain” Markdown, they’re not included in the comparison table. But they’re sup­
ported natively by AsciiDoc.

Asciidoctor, which is used for converting AsciiDoc on GitHub and GitLab, emulates some of the
common parts of the Markdown syntax, like headings, blockquotes and fenced code blocks, simpli­
fying the migration from Markdown to AsciiDoc. For details, see Markdown compatibility.

Document Attributes Reference
Document attributes are used either to configure behavior in the processor or to relay information
about the document and its environment. This page catalogs all the built-in (i.e., reserved) docu­
ment attributes in AsciiDoc.

Unless otherwise marked, these attributes can be modified (set or unset) from the API using the
:attributes option, from the CLI using the -a option, or in the document (often in the document
header) using an attribute entry.

Use the follow legend to understand the columns and values in the tables on this page.

Set By Default The attribute is automatically set and assigned a default value by the
AsciiDoc processor. The default value is indicated in bold (e.g., skip).

Allowable Values Allowable values for the attribute. Numeric values and values shown in
italic are instructional and indicate a value type (e.g., any, empty, number,
1–5, etc.).

• any — Any value is accepted.

• empty — Indicates the attribute doesn’t require an explicit value. The

Document Attributes Reference | 451

attribute is simply turned on by being set.

• empty[=effective] — In some cases, an empty value is interpreted by
the processor as one of the allowable non-empty values. This effective
value is prefixed with an equals sign and enclosed in square brackets
(e.g., [=auto]). An attribute reference will resolve to an empty value
rather than the effective value.

• (implied) — Built-in attributes that are not set may have an implied
value. The implied value is enclosed in parentheses (e.g., (attrib­
utes)). An implied value can’t be resolved using an attribute refer­
ence.

If the attribute doesn’t accept any or empty, than you must only assign
one of the allowable values or specified value type.

Header Only The attribute must be set or unset by the end of the document header
(i.e., set by the API, CLI, or in the document header). Otherwise, the
assignment won’t have any effect on the document. If an attribute is not
marked as Header Only, it can be set anywhere in the document, assum­
ing the attribute is not locked by the API or CLI. However, changing an
attribute only affects behavior for content that follows the assignment (in
document order).

Intrinsic attributes

Intrinsic attributes are set automatically by the processor. These attributes provide information
about the document being processed (e.g., docfile), the security mode under which the processor is
running (e.g., safe-mode-name), and information about the user’s environment (e.g., user-home).

Many of these attributes are read only, which means they can’t be modified (with some exceptions).
Attributes which are not are marked as modifiable. Attributes marked as both modifiable and
API/CLI Only can only be set from the API or CLI. All other attributes marked as modifiable must be
set by the end of the header (i.e., Header Only).

Name Allowable Values
Modifi­

able
API/CLI

Only Notes

backend any
ex. html5

Yes No The backend used to select
and activate the converter
that creates the output file.
Usually named according to
the output format (e.g.,
html5)

452 | Document Attributes Reference

Name Allowable Values
Modifi­

able
API/CLI

Only Notes

backend-<backend> empty No n/a A convenience attribute for
checking which backend is
selected. <backend> is the
value of the backend
attribute (e.g., backend-
html5). Only one such
attribute is set at time.

basebackend any
ex. html

No n/a The generic backend on
which the backend is based.
Typically derived from the
backend value minus trail­
ing numbers (e.g., the base­
backend for docbook5 is doc­
book). May also indicate the
internal backend employed
by the converter (e.g., the
basebackend for pdf is html).

basebackend-<basebackend> empty No n/a A convenience attribute for
checking which baseback­
end is active. <basebackend>
is the value of the baseback­
end attribute (e.g., baseback­
end-html). Only one such
attribute is set at time.

docdate date (ISO)
ex. 2019-01-04

Yes No Last modified date of the
source document.[1,2]

docdatetime datetime (ISO)
ex. 2019-01-04
19:26:06 UTC

Yes No Last modified date and time
of the source document.[1,2]

docdir directory path
ex.
/home/user/docs

If input
is a

string

Yes Full path of the directory
that contains the source doc­
ument. Empty if the safe
mode is SERVER or SECURE
(to conceal the file’s loca­
tion).

docfile file path
ex.
/home/user/docs/u
serguide.adoc

If input
is a

string

Yes Full path of the source docu­
ment. Truncated to the base­
name if the safe mode is
SERVER or SECURE (to con­
ceal the file’s location).

Document Attributes Reference | 453

Name Allowable Values
Modifi­

able
API/CLI

Only Notes

docfilesuffix file extension
ex. .adoc

If input
is a

string

Yes File extension of the source
document, including the
leading period.

docname file stem basename
ex. userguide

If input
is a

string

Yes Root name of the source doc­
ument (no leading path or
file extension).

doctime time (ISO)
ex. 19:26:06 UTC

Yes No Last modified time of the
source document.[1,2]

doctype-<doctype> empty No n/a A convenience attribute for
checking the doctype of the
document. <doctype> is the
value of the doctype
attribute (e.g., doctype-book).
Only one such attribute is
set at time.

docyear integer
ex. 2025

Yes No Year that the document was
last modified.[1,2]

embedded empty No n/a Only set if content is being
converted to an embedded
document (i.e., body of docu­
ment only).

filetype any
ex. html

If input
is a

string

Yes File extension of the output
file name (without leading
period).

filetype-<filetype> empty No n/a A convenience attribute for
checking the filetype of the
output. <filetype> is the
value of the filetype
attribute (e.g., filetype-
html). Only one such
attribute is set at time.

htmlsyntax html
xml

No n/a Syntax used when generat­
ing the HTML output. Con­
trolled by and derived from
the backend name
(html=html or xhtml=html).

localdate date (ISO)
ex. 2019-02-17

Yes No Date when the document
was converted.[2]

localdatetime datetime (ISO)
ex. 2019-02-17
19:31:05 UTC

Yes No Date and time when the doc­
ument was converted.[2]

454 | Document Attributes Reference

Name Allowable Values
Modifi­

able
API/CLI

Only Notes

localtime time (ISO)
ex. 19:31:05 UTC

Yes No Time when the document
was converted.[2]

localyear integer
ex. 2025

Yes No Year when the document
was converted.[2]

outdir directory path
ex.
/home/user/docs/di
st

No n/a Full path of the output direc­
tory. (Cannot be referenced
in the content. Only avail­
able to the API once the doc­
ument is converted).

outfile file path
ex.
/home/user/docs/di
st/userguide.html

No n/a Full path of the output file.
(Cannot be referenced in the
content. Only available to
the API once the document
is converted).

outfilesuffix file extension
ex. .html

Yes No File extension of the output
file (starting with a period)
as determined by the back­
end (.html for html, .xml for
docbook, etc.).

safe-mode-level 0
1
10
20

No n/a Numeric value of the safe
mode setting. (0=UNSAFE,
1=SAFE, 10=SERVER,
20=SECURE).

safe-mode-name UNSAFE
SAFE
SERVER
SECURE

No n/a Textual value of the safe
mode setting.

safe-mode-unsafe empty No n/a Set if the safe mode is
UNSAFE.

safe-mode-safe empty No n/a Set if the safe mode is SAFE.

safe-mode-server empty No n/a Set if the safe mode is
SERVER.

safe-mode-secure empty No n/a Set if the safe mode is
SECURE.

user-home directory path
ex. /home/user

No n/a Full path of the home direc­
tory for the current user.
Masked as . if the safe mode
is SERVER or SECURE.

[1] Only reflects the last modified time of the source document file. It does not consider the last mod­
ified time of files which are included.

Document Attributes Reference | 455

[2] If the SOURCE_DATE_EPOCH environment variable is set, the value assigned to this attribute is
built from a UTC date object that corresponds to the timestamp (as an integer) stored in that envi­
ronment variable. This override offers one way to make the conversion reproducible. See the
source date epoch specification for more information about the SOURCE_DATE_EPOCH environ­
ment variable. Otherwise, the date is expressed in the local time zone, which is reported as a time
zone offset (e.g., -0600) or UTC if the time zone offset is 0). To force the use of UTC, set the TZ=UTC
environment variable when invoking Asciidoctor.

Compliance attributes

Name Allowable Values
Set By

Default
Header

Only Notes

attribute-missing drop
drop-line
skip
warn

Yes No Controls how missing
attribute references are han­
dled.

attribute-undefined drop
drop-line

Yes No Controls how attribute unas­
signments are handled.

compat-mode empty No No Controls when the legacy
parsing mode is used to
parse the document.

experimental empty No Yes Enables Button and Menu UI
Macros and the Keyboard
Macro.

reproducible empty No Yes Prevents last-updated date
from being added to HTML
footer or DocBook info ele­
ment. Useful for storing the
output in a source code con­
trol system as it prevents
spurious changes every time
you convert the document.
Alternately, you can use the
SOURCE_DATE_EPOCH envi­
ronment variable, which
sets the epoch of all source
documents and the local
datetime to a fixed value.

skip-front-matter empty No Yes Consume YAML-style front­
matter at top of document
and store it in front-matter
attribute.

456 | Document Attributes Reference

https://reproducible-builds.org/specs/source-date-epoch/

Localization and numbering attributes

Name Allowable Values
Set By

Default
Header

Only Notes

appendix-caption any
Appendix

Yes No Label added before an
appendix title.

appendix-number character
(@)

No No Sets the seed value for the
appendix number sequence.
[1]

appendix-refsig any
Appendix

Yes No Signifier added to Appendix
title cross references.

caution-caption any
Caution

Yes No Text used to label CAUTION
admonitions when icons
aren’t enabled.

chapter-number number
(0)

No No Sets the seed value for the
chapter number sequence.[1]

Book doctype only.

chapter-refsig any
Chapter

Yes No Signifier added to Chapter
titles in cross references.
Book doctype only.

chapter-signifier any No No Label added to level 1 sec­
tion titles (chapters). Book
doctype only.

example-caption any
Example

Yes No Text used to label example
blocks.

example-number number
(0)

No No Sets the seed value for the
example number sequence.[
1]

figure-caption any
Figure

Yes No Text used to label images
and figures.

figure-number number
(0)

No No Sets the seed value for the
figure number sequence.[1]

footnote-number number
(0)

No No Sets the seed value for the
footnote number sequence.[
1]

important-caption any
Important

Yes No Text used to label IMPOR­
TANT admonitions when
icons are not enabled.

Document Attributes Reference | 457

Name Allowable Values
Set By

Default
Header

Only Notes

lang BCP 47 language
tag
(en)

No Yes Language tag specified on
document element of the
output document. Refer to
the lang and xml:lang attrib­
utes section of the HTML
specification to learn about
the acceptable values for
this attribute.

last-update-label any
Last updated

Yes Yes Text used for “Last updated”
label in footer.

listing-caption any No No Text used to label listing
blocks.

listing-number number
(0)

No No Sets the seed value for the
listing number sequence.[1]

manname-title any
(Name)

No Yes Label for program name sec­
tion in the man page.

nolang empty No Yes Prevents lang attribute from
being added to root element
of the output document.

note-caption any
Note

Yes No Text used to label NOTE
admonitions when icons
aren’t enabled.

part-refsig any
Part

Yes No Signifier added to Part titles
in cross references. Book
doctype only.

part-signifier any No No Label added to level 0 sec­
tion titles (parts). Book doc­
type only.

preface-title any No No Title text for an anonymous
preface when doctype is
book.

section-refsig any
Section

Yes No Signifier added to title of
numbered sections in cross
reference text.

table-caption any
Table

Yes No Text of label prefixed to ta­
ble titles.

table-number number
(0)

No No Sets the seed value for the
table number sequence.[1]

458 | Document Attributes Reference

https://html.spec.whatwg.org/#the-lang-and-xml:lang-attributes
https://html.spec.whatwg.org/#the-lang-and-xml:lang-attributes

Name Allowable Values
Set By

Default
Header

Only Notes

tip-caption any
Tip

Yes No Text used to label TIP admo­
nitions when icons aren’t
enabled.

toc-title any
Table of Contents

Yes Yes Title for table of contents.

untitled-label any
Untitled

Yes Yes Default document title if
document doesn’t have a
document title.

version-label any
Version

Yes Yes See Version Label Attribute.

warning-caption any
Warning

Yes No Text used to label WARNING
admonitions when icons
aren’t enabled.

Document metadata attributes

Name Allowable Values
Set By

Default
Header

Only Notes

app-name any No Yes Adds application-name meta
element for mobile devices
inside HTML document
head.

author any Extracte
d from
author

info line

Yes Can be set automatically via
the author info line or
explicitly. See Author Infor­
mation.

authorinitials any Extracte
d from
author

attribute

Yes Derived from the author
attribute by default. See
Author Information.

authors any Extracte
d from
author

info line

Yes Can be set automatically via
the author info line or
explicitly as a comma-sepa­
rated value list. See Author
Information.

copyright any No Yes Adds copyright meta ele­
ment in HTML document
head.

Document Attributes Reference | 459

Name Allowable Values
Set By

Default
Header

Only Notes

doctitle any Yes, if
docu­
ment
has a

doctitle

Yes See doctitle attribute.

description any No Yes Adds description meta ele­
ment in HTML document
head.

email any Extracte
d from
author

info line

Yes Can be any inline macro,
such as a URL. See Author
Information.

firstname any Extracte
d from
author

info line

Yes See Author Information.

front-matter any Yes, if
front

matter is
captured

n/a If skip-front-matter is set
via the API or CLI, any
YAML-style frontmatter
skimmed from the top of the
document is stored in this
attribute.

keywords any No Yes Adds keywords meta ele­
ment in HTML document
head.

lastname any Extracte
d from
author

info line

Yes See Author Information.

middlename any Extracte
d from
author

info line

Yes See Author Information.

orgname any No Yes Adds <orgname> element
value to DocBook info ele­
ment.

revdate any Extracte
d from

revision
info line

Yes See Revision Information.

460 | Document Attributes Reference

Name Allowable Values
Set By

Default
Header

Only Notes

revremark any Extracte
d from

revision
info line

Yes See Revision Information.

revnumber any Extracte
d from

revision
info line

Yes See Revision Information.

title any No Yes Value of <title> element in
HTML <head> or main Doc­
Book <info> of output docu­
ment. Used as a fallback
when the document title is
not specified. See title
attribute.

Section title and table of contents attributes

Name Allowable Values
Set By

Default
Header

Only Notes

idprefix valid XML ID start
character
_

Yes No Prefix of auto-generated sec­
tion IDs. See Change the ID
prefix.

idseparator valid XML ID char­
acter
_

Yes No Word separator used in
auto-generated section IDs.
See Change the ID word sep­
arator.

leveloffset [+-]0–5 No No Increases or decreases level
of headings below assign­
ment. A leading + or - makes
the value relative.

partnums empty No No Enables numbering of parts.
See Number book parts.
Book doctype only.

sectanchors empty No No Adds anchor in front of sec­
tion title on mouse cursor
hover.

sectids empty Yes No Generates and assigns an ID
to any section that does not
have an ID. See Disable auto­
matic ID generation.

Document Attributes Reference | 461

sections:part-numbers-and-labels.pdf#partnums

Name Allowable Values
Set By

Default
Header

Only Notes

sectlinks empty No No Turns section titles into self-
referencing links.

sectnums empty
all

No No Numbers sections to depth
specified by sectnumlevels.

sectnumlevels 0–5
(3)

No No Controls depth of section
numbering.

title-separator any No Yes Character used to separate
document title and subtitle.

toc empty[=auto]
auto
left
right
macro
preamble

No Yes Turns on table of contents
and specifies its location.

toclevels 0–5
(2)

No Yes Maximum section level to
display.

fragment empty No Yes Informs parser that docu­
ment is a fragment and that
it shouldn’t enforce proper
section nesting.

General content and formatting attributes

Name Allowable Values
Set By

Default
Header

Only Notes

asset-uri-scheme empty
http
(https)

No Yes Controls protocol used for
assets hosted on a CDN.

cache-uri empty No Yes Cache content read from
URIs.

data-uri empty No Yes Embed graphics as data-uri
elements in HTML elements
so file is completely self-con­
tained.

docinfo empty[=private]
shared
private
shared-head
private-head
shared-footer
private-footer

No Yes Read input from one or
more DocBook info files.

462 | Document Attributes Reference

Name Allowable Values
Set By

Default
Header

Only Notes

docinfodir directory path No Yes Location of docinfo files.
Defaults to directory of
source file if not specified.

docinfosubs comma-separated
substitution names
(attributes)

No Yes AsciiDoc substitutions that
are applied to docinfo con­
tent.

doctype article
book
inline
manpage

Yes Yes Output document type.

eqnums empty[=AMS]
AMS
all
none

No Yes Controls automatic equation
numbering on LaTeX blocks
in HTML output (MathJax).
If the value is AMS, only
LaTeX content enclosed in
an \begin{equa­
tion}...\end{equation} con­
tainer will be numbered. If
the value is all, then all
LaTeX blocks will be num­
bered. See equation num­
bering in MathJax.

hardbreaks-option empty No No Preserve hard line breaks.

hide-uri-scheme empty No No Hides URI scheme for raw
links.

media prepress
print
(screen)

No Yes Specifies media type of out­
put and enables behavior
specific to that media type.
PDF converter only.

nofooter empty No Yes Turns off footer.

nofootnotes empty No Yes Turns off footnotes.

noheader empty No Yes Turns off header.

notitle empty No Yes Hides the doctitle in an
embedded document. Mutu­
ally exclusive with the
showtitle attribute.

outfilesuffix file extension
ex. .html

Yes Yes File extension of output file,
including dot (.), such as
.html.

Document Attributes Reference | 463

https://docs.mathjax.org/en/v2.5-latest/tex.html#automatic-equation-numbering
https://docs.mathjax.org/en/v2.5-latest/tex.html#automatic-equation-numbering

Name Allowable Values
Set By

Default
Header

Only Notes

pagewidth integer
(425)

No Yes Page width used to calculate
the absolute width of tables
in the DocBook output.

relfileprefix empty
path segment

No No The path prefix to add to rel­
ative xrefs.

relfilesuffix file extension
path segment
ex. .html

Yes No The path suffix (e.g., file
extension) to add to relative
xrefs. Defaults to the value
of the outfilesuffix
attribute. (Preferred over
modifying outfilesuffix).

show-link-uri empty No No Prints the URI of a link after
the link text. PDF converter
only.

showtitle empty No Yes Displays the doctitle in an
embedded document. Mutu­
ally exclusive with the noti­
tle attribute.

stem empty[=asciimath]
asciimath
latexmath

No Yes Enables mathematics pro­
cessing and interpreter.

table-frame (all)
ends
sides
none

No No Controls default value for
frame attribute on tables.

table-grid (all)
cols
rows
none

No No Controls default value for
grid attribute on tables.

table-stripes (none)
even
odd
hover
all

No No Controls default value for
stripes attribute on tables.

tabsize integer (≥ 0) No No Converts tabs to spaces in
verbatim content blocks
(e.g., listing, literal).

464 | Document Attributes Reference

Name Allowable Values
Set By

Default
Header

Only Notes

webfonts empty Yes Yes Control whether webfonts
are loaded when using the
default stylesheet. When set
to empty, uses the default
font collection from Google
Fonts. A non-empty value
replaces the family query
string parameter in the
Google Fonts URL.

xrefstyle full
short
basic

No No Formatting style to apply to
cross reference text.

Image and icon attributes

Name Allowable Values
Set By

Default
Header

Only Notes

iconfont-cdn url
(default CDN URL)

No Yes If not specified, uses the
cdnjs.com service. Overrides
CDN used to link to the Font
Awesome stylesheet.

iconfont-name any
(font-awesome)

No Yes Overrides the name of the
icon font stylesheet.

iconfont-remote empty Yes Yes Allows use of a CDN for
resolving the icon font. Only
relevant used when value of
icons attribute is font.

icons empty[=image]
image
font

No Yes Chooses images or font icons
instead of text for admoni­
tions. Any other value is
assumed to be an icontype
and sets the value to empty
(image-based icons).

iconsdir directory path
url
ex. ./images/icons

Yes No Location of non-font-based
image icons. Defaults to the
icons folder under imagesdir
if imagesdir is specified and
iconsdir is not specified.

icontype jpg
(png)
gif
svg

No No File type for image icons.
Only relevant when using
image-based icons.

Document Attributes Reference | 465

Name Allowable Values
Set By

Default
Header

Only Notes

imagesdir empty
directory path
url

Yes No Location of image files.

Source highlighting and formatting attributes

Name Allowable Values
Set By

Default
Header

Only Notes

coderay-css (class)
style

No Yes Controls whether CodeRay
uses CSS classes or inline
styles.

coderay-linenums-mode inline
(table)

No No Sets how CodeRay inserts
line numbers into source
listings.

coderay-unavailable empty No Yes Instructs processor not to
load CodeRay. Also set if
processor fails to load
CodeRay.

highlightjsdir directory path
url
(default CDN URL)

No Yes Location of the highlight.js
source code highlighter
library.

highlightjs-theme highlight.js style
name
(github)

No Yes Name of theme used by
highlight.js.

prettifydir directory path
url
(default CDN URL)

No Yes Location of non-CDN prettify
source code highlighter
library.

prettify-theme prettify style name
(prettify)

No Yes Name of theme used by pret­
tify.

prewrap empty Yes No Wrap wide code listings.

pygments-css (class)
style

No Yes Controls whether Pygments
uses CSS classes or inline
styles.

pygments-linenums-mode (table)
inline

No No Sets how Pygments inserts
line numbers into source
listings.

pygments-style Pygments style
name
(default)

No Yes Name of style used by Pyg­
ments.

466 | Document Attributes Reference

https://docs.asciidoctor.org/asciidoctor/latest/html-backend/verbatim-line-wrap/

Name Allowable Values
Set By

Default
Header

Only Notes

pygments-unavailable empty No Yes Instructs processor not to
load Pygments. Also set if
processor fails to load Pyg­
ments.

rouge-css (class)
style

No Yes Controls whether Rouge
uses CSS classes or inline
styles.

rouge-linenums-mode inline
(table)

No No Sets how Rouge inserts line
numbers into source listings.
`inline` not yet supported by
Asciidoctor. See asciidoc­
tor#3641.

rouge-style Rouge style name
(github)

No Yes Name of style used by
Rouge.

rouge-unavailable empty No Yes Instructs processor not to
load Rouge. Also set if
processor fails to load
Rouge.

source-highlighter coderay
highlight.js
pygments
rouge

No Yes Specifies source code high­
lighter. Any other value is
permitted, but must be sup­
ported by a custom syntax
highlighter adapter.

source-indent integer No No Normalize block indentation
in source code listings.

source-language source code lan­
guage name

No No Default language for source
code blocks.

source-linenums-option empty No No Turns on line numbers for
source code listings.

HTML styling attributes

Name Allowable Values
Set By

Default
Header

Only Notes

copycss empty
file path

Yes Yes Copy CSS files to output.
Only relevant when the
linkcss attribute is set.

Document Attributes Reference | 467

https://github.com/asciidoctor/asciidoctor/issues/3641
https://github.com/asciidoctor/asciidoctor/issues/3641

Name Allowable Values
Set By

Default
Header

Only Notes

css-signature valid XML ID No Yes Assign value to id attribute
of HTML <body> element.
Preferred approach is to
assign an ID to document
title.

linkcss empty No Yes Links to stylesheet instead of
embedding it. Can’t be unset
in SECURE mode.

max-width CSS length (e.g.
55em, 12cm, etc)

No Yes Constrains maximum width
of document body. Not rec­
ommended. Use CSS
stylesheet instead.

stylesdir directory path
url
.

Yes Yes Location of CSS stylesheets.

stylesheet empty
file path

Yes Yes CSS stylesheet file name. An
empty value tells the con­
verter to use the default
stylesheet.

toc-class valid CSS class
name
(toc) or (toc2) if
toc=left

No Yes CSS class on the table of con­
tents container.

Manpage attributes

The attribute in this section are only relevant when using the manpage doctype and/or backend.

Name Allowable Values
Set By

Default
Header

Only Notes

mantitle any Based
on con­

tent.

Yes Metadata for man page out­
put.

manvolnum any Based
on con­

tent.

Yes Metadata for man page out­
put.

manname any Based
on con­

tent.

Yes Metadata for man page out­
put.

468 | Document Attributes Reference

Name Allowable Values
Set By

Default
Header

Only Notes

manpurpose any Based
on con­

tent

Yes Metadata for man page out­
put.

man-linkstyle link format pattern
(blue R <>)

No Yes Link style in man page out­
put.

mansource any No Yes Source (e.g., application and
version) the man page
describes.

manmanual any No Yes Manual name displayed in
the man page footer.

Security attributes

Since these attributes deal with security, they can only be set from the API or CLI.

Name Allowable Values
Set By

Default
API/CLI

Only Notes

allow-uri-read empty No Yes Allows data to be read from
URLs.

max-attribute-value-size integer (≥ 0)
4096

If safe
mode is
SECURE

Yes Limits maximum size (in
bytes) of a resolved attribute
value. Default value is only
set in SECURE mode. Since
attributes can reference
attributes, it’s possible to
create an output document
disproportionately larger
than the input document
without this limit in place.

max-include-depth integer (≥ 0)
64

Yes Yes Curtail infinite include loops
and to limit the opportunity
to exploit nested includes to
compound the size of the
output document.

[1] The -number attributes are created and managed automatically by the AsciiDoc processor for
numbered blocks. They are only used if the corresponding -caption attribute is set (e.g., listing-
caption) and the block has a title. In Asciidoctor, setting the -number attributes will influence the
next number used for subsequent numbered blocks of that type. However, you should not rely on
this behavior as it is subject to change in future revisions of the language.

Document Attributes Reference | 469

Character Replacement Attributes Reference
This page identifies built-in document attributes populated by the AsciiDoc processor that are
geared towards character replacement.

This category of attributes provide portable replacements for common typographical marks (e.g.,
smart quotes and symbols) and non-visible characters (e.g., empty and no break space), an escaping
mechanism for characters which have special meaning in AsciiDoc (e.g., plus and colon), and
passthroughs for characters which get encoded by default (e.g., less than and greater than). Like all
document attributes, you can insert the value of any one of these attributes in your content using
an attribute reference (e.g., {nbsp}).



The AsciiDoc processor does not prevent you from reassigning these predefined
attributes. However, you’re encouraged to treat them as read-only. Only a con­
verter should override these attributes if the output format requires the use of a
different encoding scheme.

Built-in document attributes for character replacement

Attribute name Replacement text Appearance

blank[1]
nothing

empty nothing

sp space

nbsp

zwsp[2]
​

wj[3]
⁠ ⁠

apos ' '

quot " "

lsquo ‘ ‘

rsquo ’ ’

ldquo “ “

rdquo ” ”

deg ° °

plus + +

brvbar ¦ ¦

vbar | |

amp & &

lt < <

gt > >

startsb [[

470 | Character Replacement Attributes Reference

Attribute name Replacement text Appearance

endsb]]

caret ^ ^

asterisk * *

tilde ~ ~

backslash \ \

backtick ` `

two-colons :: ::

two-semicolons ;; ;;

cpp (deprecated) C++ C++

cxx C++ C++

pp ++ ++

[1] An alias for the attribute empty, for those who find this terminology clearer.

[2] The Zero Width Space (ZWSP) is a code point in Unicode that shows where a long word can be
split if necessary.

[3] The word joiner (WJ) is a code point in Unicode that prevents a line break at its position.

Notice that some replacement values are Unicode characters, whereas others are numeric charac­
ter references (e.g., "). The numeric character reference is when the Unicode character could
interfere with the AsciiDoc syntax. In this case, it’s the responsibility of the converter to transform
that numeric character reference into a format that is compatible with the output format. For
example, in the man page converter, each character reference is replaced with a troff macro.

Thus, the abstraction of using AsciiDoc attributes for character replacements not only gives the
author control over how the document is interpreted, it also helps decouple content and presenta­
tion. In other words, it’s more portable to use an attribute reference in the content rather than
hardcode a numeric character reference.

Glossary of Terms

 This glossary is a work in progress. It does not include all the terms in AsciiDoc.

attribute reference

an expression for dereferencing the value of a document attribute.

attrlist

the source text that defines attributes for an element (i.e., block, block macro, inline macro) or
an include directive.

Glossary of Terms | 471

admonition

a callout paragraph or block that has a label or icon indicating its priority.

backend

a moniker for the expected output format; used as a key to select which converter to use; often
used interchangeably with the name of a converter (i.e., the "html5" backend").

block element

a line-oriented chunk of content in an AsciiDoc document.

block attribute

an attribute associated with a delimited block or paragraph; these attributes can affect process­
ing of the block, and are available to block processors, but cannot be referenced using an
attribute reference.

block name

used to refer to custom blocks, which can map an arbitrary name to one or more contexts; has a
similar role as the style for a built-in block, such as an admonition block

block style

a modifier that specializes the context of a block

built-in attribute

a document attribute that controls processing, integrations, styling, and localization.

content model

determines how the content of a block is parsed and processed (e.g., simple, compound, verba­
tim, raw, etc.)

context

the element’s type; describes the primary function of an element (e.g., sidebar, listing, example)

converter

a software component that an AsciiDoc processor calls to convert a parsed AsciiDoc document to
a given output format; the converter and output format are correlated using a backend identi­
fier.

cross reference

a link from one location in the document to another location marked by an anchor.

document attribute

an attribute associated with the document (node); in other words, an attribute in the global doc­
ument attributes dictionary; the value of these attributes can be referenced using an attribute
reference; if defined in the header, the document attribute is known as a header attribute.

element

discrete content in the source or output document. May be a branch (contains child elements) or
a leaf (does not contain child elements).

472 | Glossary of Terms

element attribute

an attribute associated with a block, macro, formatted text, or the include directive; these attrib­
utes can affect processing of the element (or include directive) and are available in the docu­
ment model; however, the value of these attributes cannot be resolved using an attribute refer­
ence.

environment attribute

a dynamic document attribute that pertains to, or gives information about, the runtime environ­
ment.

header attribute

a document attribute defined in the document header; visible from all nodes in the document;
often required for global settings such as the source highlighter or icons mode.

inline element

a phrase (i.e., span of content) within a block element or one of its attributes in an AsciiDoc doc­
ument.

list continuation

a plus sign (+) on a line by itself that connects adjacent lines of text to a list item.

macro

a syntax for representing non-text elements or that expands into text using the provided meta­
data.

macro attribute

an attribute associated with a block or inline macro; these attributes can affect processing of the
macro, and are available to macro processors, but cannot be referenced using an attribute refer­
ence.

node

an in-memory representation of a block or inline element in the parsed document model.

predefined attribute

a document attribute defined for convenience; often used for inserting special content charac­
ters.

structural container

the fixed set of reusable block enclosures (delimited regions) defined by the AsciiDoc language;
implies the block’s content model; characterized by a pair of matching delimited lines defining
the boundaries of the block’s content

quoted text

text which is enclosed in special punctuation to give it emphasis or special meaning.

user-defined attribute

a document attribute defined by the content author; used for storing reusable content, and con­
trolling conditional inclusion.

Glossary of Terms | 473

[1] Clarification about this statement.

474 | Glossary of Terms

	AsciiDoc
	Table of Contents
	About AsciiDoc
	About this documentation
	Introduction
	Document Structure
	Documents
	Lines
	Blocks
	Text and inline elements
	Encodings and AsciiDoc files

	Key Concepts
	Document
	Elements
	Attributes
	Document attributes
	Element attributes

	Macros
	Preprocessor directives

	Document Processing
	Normalization

	Blocks
	What is a block?
	Block forms
	Content model
	Context
	Summary of built-in contexts
	Contexts used by the converter

	Block style
	Block commonalities
	Delimited Blocks
	Overview
	Linewise delimiters
	Structural containers
	Summary of structural containers

	Nesting blocks

	Build a Basic Block
	Build a delimited block
	Build a block from a paragraph
	Summary of built-in blocks

	Add a Title to a Block
	Block title syntax
	Add a title to a delimited block
	Add a title to a block with attributes
	Captioned titles

	Assign an ID
	Block ID syntax
	Assign an ID to a block with attributes

	Block Masquerading
	How it works
	Built-in permutations

	Troubleshooting Blocks
	Opening and closing delimiters

	Document Attributes
	What are document attributes?
	Types of document attributes
	What does defining a document attribute mean?
	What does setting a document attribute mean?
	What does unsetting a document attribute mean?
	Where are document attributes defined, set, and unset?
	What does referencing a document attribute mean?
	Where can document attributes be referenced?
	Attribute Entries
	What is an attribute entry?
	Where can an attribute entry be declared?
	Defining document attributes without an attribute entry
	Attribute Entry Names and Values
	Valid built-in names
	Valid user-defined names
	Attribute value types and assignment methods

	Wrap Attribute Entry Values
	Soft wrap attribute values
	Hard wrap attribute values

	Attribute Entry Substitutions
	Change substitutions when assigning a value
	Substitutions for attributes defined outside the document
	Change substitutions when referencing an attribute

	Inline Attribute Entries

	Declare Built-In Attributes
	Use an attribute’s default value
	Override an attribute’s default value
	Override a default asset directory value

	Set Boolean Attributes
	Boolean attribute entry syntax
	Declare a boolean attribute

	Declare Custom Attributes
	User-defined attribute names and values
	Create a custom attribute and value

	Unset Attributes
	Unset a document attribute in the header
	Unset a document attribute in the body

	Reference Attributes
	Reference a custom attribute
	Reference a built-in attribute
	Escape an attribute reference
	Prefix with a backslash
	Enclose in a passthrough
	Alternative escape mechanisms

	Handle Unresolved References
	Missing attribute
	Undefined attribute

	Attribute Assignment Precedence
	Default attribute value precedence
	Altering the assignment precedence

	Counters

	Element Attributes
	What are element attributes?
	Attribute lists
	Positional and Named Attributes
	Positional attribute
	Block style and attribute shorthand

	Named attribute
	Unset a named attribute

	Attribute list parsing
	Substitutions

	ID Attribute
	Valid ID characters
	Block assignment
	Inline assignment
	Use an ID as an anchor
	On block element
	As an inline anchor
	On a list item
	On a table cell
	On an inline image

	Add additional anchors to a section
	Customize automatic xreftext

	Role Attribute
	Assign roles to blocks
	Shorthand role syntax for blocks
	Formal role syntax for blocks

	Assign roles to formatted inline elements

	Options Attribute
	Assign options to blocks
	Shorthand options syntax for blocks
	Formal options syntax for blocks

	Using options with other attributes

	Document Header
	Document header structure
	When does the document header end?
	Header requirements per doctype
	Header processing
	Front matter
	Document Title
	Title syntax
	Doctypes and titles

	Hide or show the document title
	Reference the document title
	title attribute
	Subtitle
	Subtitle syntax
	Partition the title using the API

	Author Information
	Author and email attributes
	Name and initials attributes

	Multiple author attributes
	Using the Author Line
	What’s the author line?
	When can I use the author line?
	Assign an author and email

	Add Multiple Authors to a Document
	Multi-author syntax
	List multiple authors on the author line

	Assign Author and Email with Attribute Entries
	author and email attribute syntax

	Reference the Author Information
	Referencing the author attributes
	Referencing information for multiple authors

	Compound Author Names
	Connecting compound author names
	Compound names in the author line
	Compound names in the author attribute

	Revision Information
	Revision attributes
	Using the Revision Line
	What’s the revision line?
	When can I use the revision line?
	Assign revision information using the revision line

	Assign Revision Attributes with Attribute Entries
	When should I set revision attributes explicitly?
	Set the revision attributes

	Version Label Attribute
	Change the version label in the byline
	Unset the version label

	Reference the Revision Attributes
	Reference revnumber

	Document Metadata
	Description
	Keywords
	Custom metadata, styles, and functions

	Document Header Reference

	Document Type
	Document types
	Inline doctype rules

	Sections
	Section Titles and Levels
	Section level syntax
	Titles as HTML headings
	Activate Section Title Links
	Turn section titles into links
	Add § to section titles

	Autogenerate Section IDs
	How a section ID is computed
	Disable automatic section ID generation
	Change the ID Prefix and Separator
	Change the ID prefix
	Change the ID word separator

	Assign Custom IDs and Reference Text
	Assign auxiliary IDs

	Section Numbers
	Turn on section numbers
	Toggle section numbers on or off per section
	sectnums order of precedence

	Specify the section levels that are numbered

	Section Styles for Articles and Books
	Book section styles
	Article section styles
	Hide Special Section Titles
	Number Special Sections
	Colophon
	Colophon section syntax

	Dedication
	Dedication section syntax

	Abstract (Section)
	Abstract section syntax

	Abstract (Block)
	Preface
	Preface for a book
	Preface for a book part

	Book Parts
	Anatomy of a part
	Part intro
	Special sections for parts
	Special sections as part siblings
	Part Numbers and Signifier

	Chapters
	Customize the chapter signifier

	Appendix
	Appendix section syntax
	Appendix label

	Glossary
	Glossary section syntax
	Glossary description list style syntax

	Bibliography
	Bibliography section syntax
	Bibliography entries syntax

	Index
	Index catalog
	Index terms
	Placement of hidden index terms

	Section Attributes and Styles Reference
	Section attributes
	Section styles

	Paragraphs
	Create a paragraph
	Hard Line Breaks
	Inline line break syntax
	hardbreaks option
	hardbreaks-option attribute

	Preamble and Lead Style
	Preamble
	Lead role

	Paragraph Alignment

	Discrete Headings
	Breaks
	Thematic breaks
	Markdown-style thematic breaks

	Page breaks

	Text Formatting and Punctuation
	Formatting terms and concepts
	Formatting marks and pairs
	Constrained formatting pair
	Unconstrained formatting pair

	Inline text and punctuation styles
	Quotes substitution
	Bold
	Bold syntax
	Mixing bold with other formatting

	Italic
	Italic syntax
	Mixing italic with other formatting

	Monospace
	Constrained
	Unconstrained
	Mixed Formatting
	Literal Monospace

	Literal Monospace
	Text Span and Built-in Roles
	Text span syntax
	Built-in roles for text
	Deprecated roles

	Highlight
	Highlight syntax

	Quotation Marks and Apostrophes
	Single and double quotation mark syntax
	Apostrophe syntax
	Possessive monospace

	Subscript and Superscript
	Subscript and superscript syntax

	Using Custom Inline Styles
	Custom style syntax

	Troubleshoot Unconstrained Formatting Pairs
	When should I use unconstrained formatting?
	Unconstrained pair edge cases

	Escape unconstrained formatting marks

	Lists
	Unordered Lists
	Basic unordered list
	Nested unordered list
	Determining list depth

	Markers
	Default markers
	Custom markers

	Ordered Lists
	Basic ordered list
	Nested ordered list
	Number styles
	Escaping the list marker

	Checklists
	Separating Lists
	Using a line comment
	Using a block attribute line

	Compound List Items
	Multiline principal text
	Empty lines in a list

	Attach blocks using a list continuation
	Drop the principal text
	Attach blocks to an ancestor list
	Enclose in open block
	Ancestor list continuation

	Summary

	Description Lists
	Anatomy
	Basic description list
	Mixing lists
	Nested description list
	Horizontal Description List
	Question and Answer Lists
	Question and answer list syntax

	Description Lists With Marker
	Introduction
	Syntax
	Subject stop
	Stacked
	Alternatives

	Links
	URLs and links
	Link-related macros
	Encode reserved characters
	Hide the URL scheme
	Autolinks
	URL schemes for autolinks
	Email autolinks
	Escaping URLs and email addresses

	URL Macro
	From URL to macro
	Custom link text
	Link attributes

	Link Macro
	Anatomy
	Link to a relative file
	When to use the link macro
	Final word

	Troubleshooting Complex URLs
	Link & URL Macro Attribute Parsing
	Link text alongside named attributes
	Target a separate window
	Target a blank window
	noopener and nofollow
	Blank window shorthand

	Mailto Macro
	Link text and named attributes
	Subject and body

	Link, URL, and Mailto Macro Attributes Reference

	Cross References
	Automatic anchors
	Internal cross references
	Explicit link text
	Natural cross reference

	Document to Document Cross References
	Navigating between source files
	Mapping references to a different structure

	Cross Reference Text and Styles
	Default styling
	Cross reference styles
	Reference signifiers

	Validate Cross References

	Footnotes
	Footnote macro syntax
	Externalizing a footnote
	Footnotes in headings

	Images
	Block image macro
	Figure caption label

	Inline image macro
	Set the Images Directory
	imagesdir attribute syntax

	Insert Images from a URL
	Image URL targets

	Position and Frame Images
	Positioning attributes
	Positioning roles
	Framing roles
	Control the float

	Add Link to Image
	link attribute
	Link controls

	Adjust Image Sizes
	width and height attributes
	pdfwidth attribute
	scaledwidth attribute
	Image sizing recap

	Specify Image Format
	Automatic image format
	format attribute
	When is the format used?

	SVG Images
	SVG dimensions
	Options for SVG images

	Images Reference

	Audio and Video
	Audio macro syntax
	Video macro syntax
	Vimeo and YouTube videos

	Audio and video attributes and options

	Icons
	Enable icons
	Where icons are used
	Image Icons Mode
	Enable image-based icons
	Default icons directory and type
	Configure the icons directory using iconsdir
	Configure the icon type using icontype

	Font Icons Mode
	Enable font-based icons
	Default icon font
	Default admonition icons
	Callout numbers and font icon mode

	Icon Macro
	Anatomy
	Example
	How the icon is resolved
	Icon macro attributes (shared)
	Role
	Link and window

	Icon macro attributes (image mode only)
	Icon macro attributes (font mode only)
	Size
	Rotate and flip

	Keyboard Macro
	Keyboard macro syntax

	Button and Menu UI Macros
	Button macro syntax
	Menu macro syntax

	Admonitions
	Admonition types
	Admonition syntax
	Enable admonition icons
	Using emoji for admonition icons

	Sidebars
	Sidebar style syntax
	Delimited sidebar syntax

	Example Blocks
	Example style syntax
	Delimited example syntax

	Blockquotes
	Basic quote syntax
	Quoted block
	Quoted paragraph
	Excerpt
	Markdown-style blockquotes

	Verses
	verse style syntax
	Delimited verse block syntax

	Verbatim and Source Blocks
	Source Code Blocks
	Using include directives in source blocks
	Source Highlighting
	source-highlighter attribute
	Available source highlighters
	Apply source highlighting
	Enable line numbering
	Disable source highlighting
	source-language attribute

	Highlight Select Lines
	Usage criteria
	highlight attribute

	Highlight PHP Source Code

	Listing Blocks
	Listing style syntax
	Delimited listing block
	Listing substitutions

	Literal Blocks
	Indent method
	literal style syntax
	Delimited literal block

	Callouts
	Callout syntax
	Automatic numbering
	Mixed numbering

	Copy and paste friendly callouts
	Custom line comment prefix
	Disable line comment processing
	XML callouts

	Callout icons

	Tables
	Build a Basic Table
	Create a table with two columns and three rows
	Add a header row to the table

	Add a Title
	Customize the Title Label
	Modify the label using table-caption
	Modify the label of an individual table using caption

	Turn Off the Title Label
	Disable the label using table-caption
	Disable the label using caption

	Add Columns to a Table
	Specify the number of columns with the cols attribute
	Using a column multiplier
	Alignment and style column operators

	Specify the number of columns using the first row
	Adjust Column Widths
	Column width
	Assign column widths using integers
	Change column widths using percentage values

	Align Content by Column
	Horizontal alignment operators
	Vertical alignment operators
	Apply horizontal and vertical alignment operators to the same column

	Format Content by Column
	Column styles and their operators
	Apply a style operator to a column
	Use AsciiDoc block elements in a column

	Add Cells and Rows to a Table
	Table cells
	Cell specifiers and operators

	Create a table cell
	Enter a row’s cells on a single line
	Enter a row’s cells on consecutive lines
	Create a Header Row
	Explicitly assign header to the first row
	Implicitly assign header to the first row

	Create a Footer Row
	Assign footer to the last row

	Align Content by Cell
	Horizontal alignment operators
	Align the content of a cell to the right
	Vertical alignment operators
	Apply horizontal and vertical alignment operators to the same cell

	Format Content by Cell
	Cell styles and their operators
	Apply a style to a table cell
	Override the column style on a cell
	Use AsciiDoc block elements in a table cell

	Span Columns and Rows
	Span factor and operator
	Span multiple columns
	Span multiple rows
	Span columns and rows

	Duplicate Cells
	Duplication factor and operator
	Duplicate a cell and its properties

	Table Width
	Fixed width
	Autowidth
	Mix fixed and autowidth columns

	Table Borders
	Frame
	Grid
	Interaction with row and column spans

	Table Striping
	Striping attributes
	stripes block attribute
	table-stripes attribute

	Table Orientation
	Landscape

	Assign a Role to a Table
	Nesting Tables
	CSV, TSV and DSV Data
	Default table syntax
	Style and layout options
	Supported data formats
	Escape the cell separator
	Delimiter-separated values
	Data table formats
	CSV and TSV
	DSV

	Custom delimiters
	Shorthand notation for data tables
	Formatting cells in a data table

	Table Reference

	Equations and Formulas (STEM)
	Activating STEM support
	Inline STEM content
	Block STEM content
	Newlines in AsciiMath blocks
	Newlines in LaTeX blocks

	Mixing STEM notations
	Equation numbering
	Reference equations

	Open Blocks
	Open block syntax

	Collapsible Blocks
	Collapsible block syntax
	Collapsible paragraph syntax
	Customize the toggle text
	Default to open
	Use as an enclosure

	Comments
	Comment lines
	Comment blocks

	Automatic Table of Contents
	Activate the TOC
	Activate the TOC from the CLI
	Customize the TOC Title
	Set toc-title

	Adjust the TOC Depth
	Set toclevels

	Position the TOC
	Display the TOC as a side column
	Display the TOC beneath the preamble
	Use the TOC macro to position the TOC
	Embeddable HTML, editor and previewer limitations

	TOC Attributes Reference

	Docinfo Files
	Head docinfo files
	Header docinfo files
	Footer docinfo files
	Naming docinfo files
	Enabling docinfo
	Locating docinfo files
	Attribute substitution in docinfo files

	Includes
	What is an include directive?
	When is an include directive useful?
	Include directive syntax
	Include processing
	Escaping an include directive
	Include file resolution
	AsciiDoc vs non-AsciiDoc files
	Offset Section Levels
	Manipulate heading levels with leveloffset

	Indent Included Content
	The indent attribute

	Use an Include File Multiple Times
	Include List Item Content
	Include Content by Tagged Regions
	Tagging regions
	Tag filtering

	Include Content by Line Ranges
	Specifying line ranges

	Include Content by URI
	Reference include content by URI
	Caching URI content

	Conditionals
	Conditional processing
	Escape a conditional directive
	ifdef and ifndef Directives
	ifdef directive
	ifndef directive
	Checking multiple attributes
	ifdef with multiple attributes
	ifndef with multiple attributes

	ifeval Directive
	Anatomy
	Values
	How value type coercion works

	Operators

	Substitutions
	Substitution types
	Substitution groups
	Normal substitution group
	Header substitution group
	Verbatim substitution group
	Pass substitution group
	None substitution group

	Escaping substitutions
	Special Characters
	Default special characters substitution
	specialchars substitution value

	Quotes
	Default quotes substitution
	quotes substitution value

	Attribute References
	Default attributes substitution
	attributes substitution value

	Character Replacements
	Default replacements substitution
	replacements substitution value

	Macros
	Default macros substitution
	macros substitution value

	Post Replacements
	Default post replacements substitution
	post_replacements substitution value

	Customize the Substitutions Applied to Blocks
	The subs attribute
	Set the subs attribute on a block
	Add and remove substitution types from a default substitution group

	Customize the Substitutions Applied to Text
	Apply substitutions to inline text

	Escape and Prevent Substitutions
	Escape with backslashes
	Passthroughs

	Passthroughs
	Passthrough Blocks
	Pass style syntax
	Delimited passthrough block syntax
	Control substitutions on a passthrough block

	Inline Passthroughs
	Inline passthrough macros
	Single and double plus
	Triple plus
	Inline pass macro
	Custom substitutions

	Nesting blocks and passthroughs

	Reference
	Syntax Quick Reference
	Paragraphs
	Text formatting
	Links
	Document header
	Section titles
	Automatic TOC
	Includes
	Lists
	Images
	Audio
	Videos
	Keyboard, button, and menu macros
	Literals and source code
	Admonitions
	More delimited blocks
	Tables
	IDs, roles, and options
	Comments
	Breaks
	Attributes and substitutions
	Text replacements
	Escaping substitutions
	Bibliography
	Footnotes
	Markdown compatibility

	Frequently Asked Questions (FAQ)
	Does AsciiDoc only support ASCII text?
	What’s the relationship between a converter and a backend?
	What’s the media type (aka MIME type) for AsciiDoc?
	Why is my document attribute being ignored?
	Part way through the document, the blocks stop rendering correctly. What went wrong?
	Why don’t links to URLs that contain an underscore or caret work?

	Compare AsciiDoc to Markdown
	Starting with Markdown
	Graduating to AsciiDoc
	Comparison by example

	Document Attributes Reference
	Intrinsic attributes
	Compliance attributes
	Localization and numbering attributes
	Document metadata attributes
	Section title and table of contents attributes
	General content and formatting attributes
	Image and icon attributes
	Source highlighting and formatting attributes
	HTML styling attributes
	Manpage attributes
	Security attributes

	Character Replacement Attributes Reference
	Glossary of Terms

